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Abstract
We study the reaction-diffusion model that consists of equations that govern the spatio-temporal
evolution of sedentary and migrating farmers and hunter-gatherers in the Neolithic transition.
Ecologically, the model stems from the fact that a lifestyle of agriculture and settlement, as it
allows for a larger population, is evolutionary advantageous than hunting and gathering. There-
fore, in our modelling framework, we assume that farmers do not migrate unless the population
density pressure forces them. We prove the global well-posedness of the system and, in con-
trast to the previous modelling work on the transition from hunting and gathering to farming, we
show numerically that for a suitable value of a “stay-or-migrate” threshold the model is capable of
reproducing the rate of spread of farming that corresponds to the archeological findings in Europe.
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1 Introduction

Mathematical modelling plays an increasingly important role in ecology and evolution. Good math-
ematical models with advanced data analysis improve our understanding of how the dynamics of
species, including human populations are determined by fundamental biological conditions and pro-
cesses. The Neolithic transition in Europe involving the demographic shift from hunting and gathering
to farming is one of such examples that can be fruitfully modelled mathematically.
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Figure 1: Spread of early farming in Europe. The site of Jericho is taken as the presumed centre of
diffusion in this case. The points correspond to sites providing estimates of the time of arrival of early
farming in different parts of Europe [2, 3]]. The figure taken from [2]], reprinted by permission from
the Royal Anthropological Institute of Great Britain and Irelands.

The Neolithic transition in Europe started around 10000 years ago. Radiocarbon dating has pro-
duced a large amount of evidence regarding this transition in Europe. In particular, it follows from the
data that the transition from foraging to agriculture was steadily shifted with an almost constant ve-
locity that is roughly estimated to be 0.8~1.2 km/year, see Fig.|1|[2, 3, 17]. The question that arises is
why and how the Neolithic transition evolved with constant velocity? In order to answer this question
theoretically, as a natural extension of the Fisher-KPP equation [[13]], the following reaction-diffusion
model involving the conversion of hunter-gatherers to farmers was proposed in [2, 3]]:

F[:dFAF—I—I’F(l—F/KF)F-i-eFFH, 1
H, = dyAH + ry(1 —H /Ky )H — ey FH,

where F(x,t) and H(x,t) are, respectively, the densities of the farmer and hunter-gatherer populations
at the time ¢ > 0 and the position x in the space domain; dr, rg and Kr (resp., dy, ry and Kg)
are, respectively, the random dispersal rate, the intrinsic growth rate and the carrying capacity of
the farming (resp., hunting-gathering) population. The acculturation (or conversion) rates between
hunter-gatherers and farmers are denoted by er and ey. All these rates are positive constants.

Let us consider in a bounded domain Q. We assume that ' and G satisfy homogeneous
Neumann boundary conditions as well as the initial conditions

F(Xa()) :FO(X)7 H(Xa()) :HO(X)7 ()

where Fy and Gq are nonnegative and Fy is compactly supported in €. It can be shown both nu-
merically and analytically (see, e.g., [[19]) that, whenever ey Kr > rg, then the spatially constant
equilibrium (0, Kp) is unstable, whereas (Kr,0) is asymptotically stable. Therefore (1)) is a monos-
table system. Ecologically, this implies that hunter-gatherers are completely converted into farmers,
which is in close agreement with the observations [3]. Thus, the system (I]) seems to be a plausible
model for the transition from hunting-gathering into farming. A question of interest is then whether
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the observed transition velocity of 0.8~1.2 km/year can be predicted by this model? For this ques-
tion, we have the following analytical result: the one dimensional system (I)-(2) with the boundary
conditions

(F,H)(—) = (KF,0), (F,H)(+e)=(0,Kn),

which emerge from the observation that the initial population of hunter-gatherers is completely re-
placed by the population of farmers after large time, possesses indeed a travelling wave solution with
the minimal velocity ¢* given by

¢t = 2\/dF(rF +€FKH),

see [4]]. It is shown in [2] that dr = 61.76 kmz/year and rr = 0.032/year, respectively. Whence the
speed of the farming spread predicted by the model (1) is larger than 2.8 km/year and, consequently,
much faster that the observed transition velocity of about 1 km/year on average.

For this problem, Fort studied the dispersal of farmers from the available data and gave the esti-
mate dp = 15.44 kmz/year [16, [14]]. However, this implies that ¢* > 2+/drrr = 1.4 km/year which
is still larger than the observation. Then Fort and Méndez proposed a time-delayed Fisher-KPP equa-
tion which takes into account the newborn children of farmers that usually can migrate only after
some time, namely, after they are grown-up [15]]. They showed that the velocity of the traveling wave

solution of this equation is given by
2\/ d FIF

T lvte)2

where 7 is the residence time, i.e., the time interval between the migration of parents and, presumably,
the subsequent migration of children [15]. As a result, the velocity of the farming spread can be
slowed down by taking 7 suitably large (say, T = 25 years).

In this paper we aim to propose a new model for the Neolithic transition from hunter-gatherers
to farmers which will possibly possess expanding velocity that is close to the observed one. Our
motivation for the ‘farmer-hunter’-modelling is that farmers when settled in a favourable environment
for farming prefer to stay there unless they are forced to move. The driving force for migration, which
we have in mind, is the farmer overcrowding. Therefore, our essential assumptions on the migration
of farmers and hunter-gatherers are as follows:

(A1) Farmers have a sedentary lifestyle;

(A2) If the density of the sedentary farmers becomes high, some of them start migrating and dispers-
ing randomly, as if the population pressure effect occurs;

(A3) Sedentary and migrating farmers convert to each other depending on the total density of the
farmers;

(A4) Hunter-gatherers always disperse randomly, independently of the farmers.

We remark that (A1)-(A3) are the essential assumptions which are different from the assumptions
in the previous models. In addition to (A1)-(A4), the dynamics of farmers and hunter-gatherers is
assumed to obey the logistic growth and the conversion of hunter-gatherers into farmers is taken to be
proportional to the population densities.



In view of (A1)-(A4), we propose the following macroscopic three-component nondimensional-
ized system:

Fu= (1= F)F +51FiH — - (p(F)Fi — (1= p(F))F2),

1
Fr = dAFs + (1 = F)F + s2PoH + — (p(F)Fi = (1 = p(F))F2), ®
H, = AH+b(1 —H)H—glFlH—ngzH,

where F|, F> and H represent the densities of sedentary farmers, migrating farmers and hunter-
gatherers, respectively, and F = F| + F, is the total density of farmers. Further, b is the intrinsic
growth rate for the population of hunter-gatherers, s; and g; (resp., s and g») are the acculturation
rates between F; and H (resp., F> and H). The probability density function p is the normalised con-
version rate between F| and F> such that

d
peC'(Ry), 0<p()<1VzeR,  —p(z)>0VzeRy,
(Hp) dz
¢ : z— p(z)z is Lipschitz continuous with a Lipschitz constant C .

For example, one may consider p of the form

Fm
p(F) = pm(F;F.) = WFC’"’ 4)

where m is a positive integer and F, is a switching value for the conversion between F; and F3, a

1
density threshold at which the probability of remaining sedentary and migrating is equal. Finally, s

is the speed of conversion between F; and F;.
In this paper we study the system (3)) under the additional assumption that s; = s, = 5, g1 = g2 =:
g, dr =:d and dg = 1, namely,

Fiu = (1= F)Fy +sFiH — (p(F)Fi— (1~ p(F))Fa),
Fy = dAF; + (1 — F)F> + sFH + é (p(F)F — (1 — p(F))F), )
H,=AH+b(1—H)H —gFH
in an open bounded domain Q with the homogeneous Neumann boundary conditions
dyF, =dyH =0, 6)
where Vv is the outward normal vector on dQ and with the nonnegative initial conditions
(Fi,F>,H)(x,0) = (Fio, F20,Hp) (X). (7)
First, we show numerically the behaviour of a solution of the two-dimensional problem (5)-(7)
with p(F) = pa(F;F,) in Q1 = {x = (x,y) € R?|0 < x < L,0 <y < L}, where Fyo is compactly

supported in Q;, F>o = 0 and Hy = 1 in & except in the region where Fj( > 0, as shown in Fig.
In this modelling setting, only sedentary farmers F| and hunter-gatherers H initially exist. However,
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Figure 2: Spatial patterns of (F,F>,H) of — in Q59 where s = 5.0, € =0.01, F. =0.5,d = 0.1,
b =1.0 and g =4.0. Here F] is rescaled by 3 x F7.

even if F, does not initially exist, it eventually appears due to the conversion from F; as shown in
Fig. Then, the densities of the farming populations F] and F; expand uniformly throughout the
domain, and farmers (F = F| + F,) completely replace the population of hunter-gatherers who become
extinct after large time. A characteristic property of () is that the expanding velocity of the total
population of farmers F becomes slower as F. increases, as shown in Figures [3|and [ These figures
suggest that the transition velocity can be slowed down by taking F; suitably large. We hypothesise
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Figure 3: Spatial patterns of F(x,y,80) of — in Q0, where the parameters are the same as in
Fig. P2|except for F,.
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Figure 4: Average distance x, between the front of F in Fig. |3|and the origin (0,0).

that the threshold F¢, in a sense, reflects advancing farming technology in the Neolithic transition.
Ecologically speaking, the elevated value of F. can be interpreted as a certain level of development
of farming and food-producing technology and associated sedentary lifestyle traits such as pottery
making, domestication of various plants and animals (and related social changes, security, trading)
that, as suggested by Childe in [8], can support a much larger population density than hunting and
gathering and thus provide the basis for densely populated settlements. With all this said, the extent
of how agriculture affected the decision-making to stay or migrate in the Neolithic transition can be
modelled by the parameter F.. We therefore propose the system () as a plausible dispersal model for
describing the interaction between farmers and hunter-gatherers in the Neolithic transition.

The numerical results bring us to search for a rigorous setting. Hence, the purpose of this paper
is to prove the existence and uniqueness of the global in time solution. However, the general theory
on reaction-diffusion systems cannot be applied directly due to the lack of regularity. Therefore, a
suitable well-posedness theory has to be developed.



From now on, we use the unknowns (u,v,w) instead of (F, F>,H) and rewrite the system as
( 1
= (1—u—v)u+suw— P (p(u+v)u—(1—p(u+v))v) inQr,
1
vi=dAv+ (1 —u—v)v+svw+ P (p(u+viu—(1—p(u+v))v) inQr,

wy=Aw+b(1—w)w—g(u+v)w inQr,
avV: &vW:O on I._‘T7
[ (u(x,0),v(x,0),w(x,0)) = (uo,vo,wp) in L,

where Q is an open bounded domain in RY with a sufficiently smooth boundary (e.g., dQ € C?),
Or =Qx(0,T) and I'r = dQ x (0,T) for any T > 0; v is the unit normal vector on the boundary
I'7 pointing outward of Q7. Moreover, we suppose that the initial functions ug, vo and wq satisfy

(Ho) up,vo,wo EC(ﬁ) and ug,v0>0,0<ug+vyg<1,0<wy<1 in Q.

We will write

filw,yyw) = (1 —u—v)u+suw— % (plu+viu—(1—plu+v))v), (8)
Foluvw) = (1 —u—v)v—l—svw—l—%(p(u%—v)u— (1= plu+v))v), ©)
f(u,v,w) =b(1 —w)w—g(u+v)w. (10)

Definition 1.1. A triple of functions (u,v,w) is a weak solution of Problem (.%7) if

i) uc COL0,T;L7(Q)),
v,w € L=(0,T;L*(Q)) N L*(0,T; H (Q)), v;,w; € L*(0,T; (H'(Q))"),

1) u,v,w satisfy

—/Quoé(o)dx://QTfl(”aVaW)5+”5thdl (11)
_/Qvoaj(O)dx://QTdvA&§+fz(u,v,w)é+v§,dxdr (12)
_/Qwog(O)dx://QTwAéJrfs(u,v,W)éJrWdedt 3

for any test function & € C>'(Qy) such that £ (x,T) = 0in Q and dy& = 0 on 9Q x [0, T].
The main theorem can be stated as follows:

Theorem 1.1. Suppose that the hypotheses (H,) and (Hy) are satisfied, then Problem (&) possesses
a unique weak solution (u,v,w) such that

0<u,v<C and 0<w<1 in QT (14)

where Ce =2(1+s541/€). Moreover, (v,w) € [Wg’l(Qx (8,T)))>forall0 <8 <T andall p € [1,).
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The idea of the proof is to consider a related uniformly parabolic PDE/PDE problem, where we
add diffusion to the equation for u,

(u, =aAu+ (1 —u—v)u+suw—é(p(u+v)u— (I1—p(u+v))v) inQr,
vy =dAv+ (1 —u—v)v+svw+%(p(u—l—v)u— (I1—p(u+v))v) inQr,

wy=Aw+b(l—w)w—g(u+v)w in Qr,
avl/l: 8\/\/: avW:O on FT,
[ (u(x,0),v(x,0),w(x,0)) = (uo,vo,wo) in L,

for some a > 0. We prove that Problem (Z?,) possesses a unique classical solution (ug,va,wy) €
[C21(Qx (0,T]) NC(Q x [0,T])]? which converges to the unique solution of Problem (Z?) asa — 0.
The proof is thus based on a standard approach where the solution to the problem which we study is
approximated by a sequence of regular solutions of related problems, the existence of which follows
from the classical theory of semilinear equations. Other approaches such as direct fixed point method
based upon analytic semigroups could be used; however, these approaches may bring other difficulties
to be dealt with.

We conclude this introductory part with a remark that there exists an excessive amount of literature
on reaction-diffusion equation. We mention the monographs by N. F. Britton [6]], P. C. Fife [12], W.-
M. Ni [26] and J. Smoller [27]], and the articles [l1, 110, 11 18}, 23} 24, 25]].

2 Existence of a unique solution of Problem (%)

Lemma 2.1. Suppose that the hypotheses (H,) and (Hy) are satisfied and suppose that (ug,va,Wa) is
the unique solution of Problem (Z,). Then (uq,v4,w,) remains nonnegative for all times.

Proof. Let us consider the auxiliary problem

uy = alu+ (1 —u—v)u+suw—%(p(u+v)u— (1=p(u+v))v) in Qr,

1
Vi =dAv+ (1 —u—v)v+svw+ c (p(u+v)u" — (1= p(u+v))v) in Qr,

wy =Aw+b(1 —w)w—g(u+v)w in Qr,
avl/l - 8\;\/ - avW - 0 on FT,
L (M(X,O),V()C,O),W(X, 0)) = (u07V07W0) in Q’

where u™ = max{u, 0}. Moreover, let us denote
1 1
Z()=z—aAz— (1 —z—v)z—szw+ Ep(z+v)z— E(l —p(z+v))v,
1 1
L) =zu—dAz— (1 —u—2)z—szw— Ep(quz)u+ + E(l —p(u+2z))z,

and
Lw(@) =z —Az—b(l —2)z+g(u+v)z. (15)
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Then, by the standard comparison principle applied subsequently to each equation, we obtain the
non-negativeness of the solution. Indeed, on the one hand we have .%,(0) = —p(u)u™ /e < 0 which
implies that v > 0in Q x [0, ). On the other hand, .%,(0) = —(1 — p(v))v/€ < 0 for v > 0. Therefore,
u > 0 for each (x,t) € Q x [0,0). Finally, .%,,(0) = 0 implies w > 0 in Q x [0, ).

Thus, for any nonnegative initial data (ug,vo,wo) € R3. the unique solution of Problem (2;) is
also the solution of Problem (7,), which completes the proof. O]

Theorem 2.2. Let a and € be positive constants and suppose that the hypotheses (H,) and (Hy) are
satisfied. Problem (2,) admits a unique classical solution (ug,ve,wa) € [CP1(Q x (0,T]) NC(Q x
[0, T))]? such that

0<ug,vy, <Cg and 0<w,<1 in @T (16)

where Ce =2(1+s+1/¢€).

Proof. The existence of the unique classical solution (u,,v,,w,) of Problem (2,) follows from the
classical theory of semilinear equations, e.g., Proposition 7.3.2 [22] (p. 277). The positivity of the
solution is proved in Lemma [2.1]

To find an upper bound for u, and v, let us consider the system (%),

( .
in Qr,

)
v —dAv = F(u,v,w) in Qr,
(2%) w; —Aw = F3(u,v,w) in Qr,
oyu=dyv=dyw=0 onl7,
L (u(x,0),v(x,0),w(x,0)) = (uo(x),vo(x),wo(x)) in L,

uy —alAu = Fy(u,v,w

where
Fi(u,v,w) =max{fi(z1,22,23); z1=u, 0 <zp <, 0 < zz <w},
FZ(M,V,W) = maX{fz(Z],Zz,Z}); 0 S <1 S u, 2=y, 0 S 3 S W}7
F3(u,v,w) = max{f3(z1,22,23); 0 <z1 <u, 0<z <v, zz3 =w},

and fi, f» and f3 are defined by (8)), (9) and (10), respectively. We note that the nonlinearities fi, f>
and f3 are continuous in their variables and that

Fe(u,vyw) > fi(u,vyw), k=1,2,3. (17)
Moreover, we see that
Fi(u,v,w) = max (1—u)u—uz2—|—SLtz3—lp(u—i—@)(u—i—zz)—f—Z—2
0<z2,<y, 0<z3<w E €

< (1—u)u+suw+£,

1 v
F(u,v,w) = max {(1—v)v—z|v+svz3—|—gp(zl+v)(21+v)—g}

0<z1<u, 0<z3<w
1
<(1=v)v+svw+ Ep(u—f—v)(u—f—v) - g,

F = 1— — = 1—
3<M,V,W> 0§Z1§I{tl,a(§(§Z2SV{b( W)W g(Z1 ‘I'ZZ)W} bW( W)a



and that the system (27),

( u; —alu = Fy(u,v,w) in QOr,

v —dAv = F>(u,v,w) in Qr,

(27 w;—Aw = F3(w)  in Qr,
ou=dywv=odyw=0 onlr,

 (u(x,0),v(x,0),w(x,0)) = (uo(x),vo(x),wo(x)) inQ,

where B N
Fi(u,v,w) = (1 —u)u+ suw + ps

1
Fy(u,v,w) = (1 —v)v+svw+ Ep(u+v)(u—l—v) — g,
F(w) = b(1 —w)w,
is a cooperative system since 8Vfl =1/e >0, OF = su>0, 0,F = (P (u+v)(u+v)+plu+
v))/€ >0, dyF, =sv>0and d,F3 = d,F3 = 0, see [20] on p. 168. Therefore it admits a comparison
principle, [20] (Theorem D, p. 170). In particular, it follows from the comparison principle and (17),

which in turn implies the inequalities

Fe(u,v,w) > fi(u,vw), k=1,2,3, (18)

that the solution (i, V4, w,) of Problem (Z2,) is a lower solution for Problem (Z27) in Q x [0, o).

Indeed, set B
L1 (u,v,w) = du— alu— Fy(u,v,w),

L (u,v,w) = dv —dAv — E(u, VW),
Ls(u,v,w) = Iw — Aw — F3(w).
Then,

Dg/ﬂ] (uavvmwa) - atua _aAua _fvl(uﬂh‘}a?wa) - fl (uayvaawa) _ﬁl(uaava,wa) S 07
0,

gZ(”aava;Wa) - 8tva —dAVa _ﬁz(uaavmwa) - fZ(uaava7Wa) _FZ(uaavaawa) S

and
Ls(Ua,va,Wa) = Owy — Awg — F3(wy) = f3 (g, va,wa) — F3(wg) < 0.

by (18). Thus, we obtain
0<u,<u, 0<v,<v and 0<w,<w inQx]0,00) (19)

where (u,v,w) is the solution of Problem (7). Therefore any upper bound for (u,v,w) is also the

upper bound for (g, va,wy).
Let (U,V,W) be the solution of the ODE problem

U'=F(U,V,W),
V/ == E(U7V,W)7
W' =F(W),

(U(0),V(0),W(0)) = (lluoll =), [Voll =) [Woll ()

10



Again by the comparison principle, (U,V,W) is an upper solution for Problem (") (and conse-
quently for Problem (Z,) by (19)). We remark that 0 <W < 1. We set Z= U + V and obtain the
equation

1% vV o1
7' = (1—U)U+sUW+E+(1—V)V+sVW—E+Ep(U+V)(U+V)

1
=Z+5ZW — (U*+V?) + _r(2)Z

1 1,
<|(l4+s+-)Z—=Z
€ 2

since 0 < p < 1 and thanks to the elementary inequality a” + b> > (a + b)?/2 for a,b € R,. Set
Ce =2(1 +s+ 1/¢) and define Z as the solution of the initial value problem (%),

(P {_ Z = (Ce—2)Z)2,
Z(0) = 2y,

where Zo = [[uo|| ;= (q) + [[Voll () € [0,2]. Then Z is a lower solution for (£7%) and, by the compari-
son principle,
0<Z=U+V<Z<C;

for each t > 0. Altogether,
0<u, <u<U<C,

0<v, <v<V G,

0<w, <w<W<1

in Q x [0,0). O

Remark 2.1. Because of regularity results for parabolic problems (e.g. [21]], Theorem I'V.5.3) we have
(tta, Va, wa) € [CZH42H@/2(Q)]3 for all o € (0,1) given that the initial data are sufficiently smooth.

Remark 2.2. We note that the construction of (Fi,F;, F3) of (27%) follows the classical approach of
J. Smoller [27], where (Fy,F>,F3) is called the maximal vector field associated to the vector field
(fi,f2,f3). The solution of the ODE problem associated to (£?*) is then shown to be an upper
solution for Problem (&7,) by the comparison Theorem 14.16 in [27]]. Since it is impossible to write
(F1, F>, F3) explicitly in our case, we cannot use this vector field directly.

Remark 2.3. The upper bound for w, can be also obtained immediately by the comparison principle
since .%,,(1) > 0 for ug,v, > 0 and %, defined by (15).

Remark 2.4. For further use, let us mention that the classical solution (u4,v4,w,) of Problem ()
satisfies the integral equalities

_/Quoa;(O)dxz//QTauaAeg+f1(ua,va,wa)§+u€zdxdt (20)
—/Qvoé(O)dx://QTdvaAé+f2(Ma,Va,Wa)5+V€thdt @D
_/Qwog(O)dx://QTwaAé+f3(ua,va,wa)§+wétdxdt (22)

for any test function & € C>!(Qy) such that £ (x,T) = 0in Q and d,& = 0 on 9Q x [0, T].

11



3 Singular limit problem (%2,) as a — 0 for € > 0 fixed
First, we show some a-priori estimates. We always assume that the hypotheses (H),) and (Hp) are
satisfied.

Lemma 3.1. There exists a positive constant C independent of the diffusion coefficient a such that

// uﬁdxdt,// v2dxdr < Gy (23)
Or Or

Proof. The function z = u, + v, satisfies the equation
7 = aAug +dAvg + (1 —2)z+ swaz.

We integrate it in space and obtain

/zdx / (1=2)z4+swuz) dx < (1+5) /zdx /z dx (24)
(H—s)/gzdx Ql (/Z) (25)

where we have used the homogeneous Neumann boundary conditions, the umform bound 0 <w, <1
and the Holder inequality ([z)? < |Q| [ z?. Therefore, in view of . = [oz(,1) satisfies the
equation

Y < (Cyja —y)y/191, ¥(0) = yo,
where yo = [20 = [o (10 +vo) < Q[ and C; ) = (14 5)|Q|. From this equation we deduce the
uniform L' bound

/ Z(t> < Cs,|Q|a vt > 0.
Q

Integrating (24)) in time for ¢ € (0, 7] and using the above estimate give

/ / /Z </zo+ l-l-s/ /z<|£2]—|— 1+5)TCy g =

which completes the proof. 0

Lemma 3.2. There exist positive constants Cy and C, independent of the diffusion coefficient a (but
Cy depends on €) such that

a/ |Viug|? dxdt, d/ Vv, |*dxdr < Cy. (26)
Or Or
/ Vg |* dxdr < Cs. 27)
or
Proof. Let us multiply the equations for u, and v, by u, and v,, respectively, and integrate in space.
We obtain

1d
2di (u3+vz)+a/|vua|2+d/|VV“|2+/Q(ua‘FVa)(uZ—i-Vg)
1
/{p ua"’va (l_p(ua+va 2} / 1+SWa)( +v )+E/£2uava (28)
1
S(l—i—s—l—%)/g(ua—f—vi)

12



where we have used the integration by parts formula, the upper bound w, < 1 and the Young inequal-

ity. In view of (23), integrating (28) in time gives (26).
Similarly, we deduce from the equation for w, that

1d
——/W§+/|Vwa|2+g/(ua—kva)wg:b/(l—wa)wﬁ§b|Q|,
2dr Jgo Q Q Q

thanks to the upper bound w, < 1. Integrating this inequalities in time gives the estimate (27). [

Remark 3.1. We remark that the estimate for u, is not uniform in a. By using and the
estimates on the gradients (26]) and we obtain, for example,
1(a)ill 20,711 (@)y) = sup

/o
5 G5 @
H(PHLZ((),T;HI(Q)) 0 (Hl)/XHl

< s Vil 19l

191200711 () =1

<1

+ |lf (“aavaaWaHLz(QT)H(pHLz(QT)}
<C(e).

We deduce that ug,ve,wa € {8 € L*(0,T;H'(Q)), ¥ € L*(0,T;(H'(Q)))} as the above calcula-
tions hold for v, and w,. As a consequence { (i, vaWa)}as0 € [C(0,T;L2(Q))]3.

The main tool that is used to prove the existence of the solution of Problem () is the following
Fréchet-Kolmogorov compactness theorem, e.g. [35], Theorem IV.25 on p. 72; the presented form
below is taken from [9], Proposition 2.5.

Theorem 3.3 (Fréchet-Kolmogorov). Let .% be a bounded subset of LP (Qr) with 1 < p < eo. Assume
that

i) for any n > 0 and any subset ® € Qr, there exists 6 > 0 (6 < dist(®,dQr)) such that
1FC+6,0) = f D) lr (o) + 1 (1 +7) = F 60| (@) <7
forall &, and f € .F satisfying |E|+|71| < 8.
ii) for any n > 0, there exists a subset ® € Q such that
1 fllzr o0y <M
forall fe .
Then % is precompact in LP (Qr).

Throughout the paper we will consider two subsets Q, and Q. of Q; in particular, for sufficiently
small r > 0 we define Q, = {x € Q|B(x,2r) C Q} and Q). = U,cq B(x,r), where B(x,r) denotes the
ball in RV with centre x and radius r. We have Q, C Q. C Q.

13



Lemma 3.4. Let r € (0,7) for some 7 > 0 sufficiently small. There exist positive constants C4, Cs and

Cy independent of the diffusion coefficient a such that
T—7
/ / (1 (2,1 4+ T) — ug(x,1))? dxdr < Cyt,
0 ,
T—1
/ / (v, + 7) — va(x, )2 dedr < CsT,
0 Q,
T—-7
/ / (Wa(x,1+7T) —wg(x,1))?dxdr < Cet
0 Q,

forall T € (0,T).
Proof. We prove since and can be proved analogously. We can write

/()T—r/gr(ua(x,ﬂrr) — g (x,1))? dxdt
S/OT_T/Q(ua(x”JFT)—Ma(x,t))zdxdt

_ /0 o /Q (a1 +T) — ta(x,1)) ( [ tH&,ua(x,t’)dt’) dxdr
— /OT_T/Q(ua(x,tJrr) —ug(x,1)) (/()Talua(x,t—i—t')dt') dxdt

:/T/TT/(ua(x,t+’c)—ua(x,t))atua(x,t—l—t’)dxdtdt’

/ /T r/ {a g (2,1 +T) — g (x,1) ) Aug (x,t +1')

+ (ua(x,1 +7) — ua(x,1)) fi (Ua;va, wa) (x, 1 +1') } dxdrd’
=L+

The first integral with the Laplacian can be estimated in the following way,
T pT—7
— a/ / /(ua(x,t+r) — g (x,1))Aug(x,t +1") dxde dt’
0 JO Q
T pT—7
:—a/ / /V[ua(x,t+f)—ua(x,t)]-Vua(x,t+t')dxdtdt'
0 JO Q

T
§2a‘c/ /|Vua(x,t)|2dxdt
0 Q

<2Cit

(29)

(30)

€1V

where we have used the Holder inequality and (26). By using the bounds uniform in the diffusion

coefficient @ we can easily find a positive constant C = C(Cg, T, |Q|) such that

T T—7
b= /0 /0 /Q (a5, + ) — ha(3,0)) fi 1ty vy i) (1 -+ ) e

14



<(Cr.

We deduce the inequality from both estimates for /; and I;.

Lemma 3.5. For each r € (0,7) and 7 > 0 sufficiently small, it holds that

T 2 Cii.p2
/ / (a4 E.1) — ua(x,1))2cxdr < SLIER,
0 Q, a

T
| Gt &0 = vt Pavar < e,
and

T
//(wa(x+§,t)—wa(x,t))2dxdt§C2|§|2
0 Q,

forall E € RV, |&| < r where the constants Ci and C, are given by @ and (12:71)

Proof. In the case of (32) we can write

a/OT/Qr(ua()H—ﬁ,t)—ua(x,t))zdxdt
2

:a/OT/Qr</01Vua(x+9§,t)-§d9) drdi
ga|§]2/01/OT/QrWua(ereé,t)]zdxdth

T

ga|§|2/ /|Vua(x,t)|2dxdt
0o Ja

§C1\§|2

due to (26). Analogously we prove (33) and (34).

Corollary 3.6. The sequences {v,}a~0 and {wq}a>o are relatively compact in L*(Qr).

(32)

(33)

(34)

Proof. We see from and (resp., and (34)) that differences of space and time translates
of v, (resp., wg) tend to zero uniformly in @ in L? topology as the translation parameter tends to zero.

Moreover, in view of (16)) we have that

T T
/ /(va(x,t))zdxdzgcgmm and / / (va(x,1))?dxdr < 2C2T|0Q]r,
T-1JQ 0 JO\Q,

and

T T
/ /(wa(x,t))%xdtgygyc and / / (walx,1))2dxds < 2T|9Qr
T-7JQ 0o Jaa,

which implies that the hypothesis ii) of the Fréchet-Kolmogorov Theorem [3.3]is satisfied. Applying
this theorem to {v,},~0 and {w,},~0 implies that the sequences {v,},~0 and {w,},~0 are relatively

compact in L*(Qr).

15
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Because of the dependence of on the parameter a, we are not able to control L>-differences
of space translates in the case of the sequence {u,},~0 uniformly in a and to deduce the relative
compactness of {u, }.~0 in L>(Qr) as above. Nevertheless, the desired result can be obtained through
the L' estimates on differences of space translates.

Lemma 3.7. For each r € (0,7) and # > O sufficiently small, there exists a positive function p (&) such
that p(&) — 0 uniformly in a as |§| — 0 and

| et )~ ot avar < (@) 35)
0 Q,

forallE € RN, |E] < r.

Proof. In this proof only we will write shortly ug = uy(x+&,t), ve =va(x+&,1), wg = wa(x+8,1),
u=ug(x,t),v=vg(x,t) and w = w,(x,t) and we will use the following notation:

0 =ug(x+&,t) —uq(x,t) = ug —u, i
Va(X+&,1) —va(x,1) = ve — v, %

Wa(x+&,t) —wa(x,t) =wg —w, W

ta(x+&,1) +uq(x,t) = ug +u,
va(x+&,1) +va(x,1) = ve +v,
Wa(x+ &) +wa(x,1) = we +w.

v

w

We recall that 0 < 1,7 < 2C, and 0 < w < 2 by (16). We will also consider a smooth convex function
m: R — Ry such that m > 0, m(0) = 0 and m(r) = |r| — 1/2 for |r| > 1, and define for o > 0

approximations of m by
;

mo(r) = am (—) :

o

Then, m,, satisfies
me(r) — |r| and m(r) — sgn(r)

as o — 0. Furthermore, we define a function u such that

HLECH(), 0<u(x)<1in Q. u(x)=1 in Q, and
V|, |Auf <C(r).

First, we multiply the equation for i, i.e.,
ol = aAli+ f1(ug,ve, we) — fi(u,v,w)

by uml, () and integrate in space. We obtain

dyipmly (i) dx = a | Ad(umly (i) dx
QL QL

" /Q (g, ) i )
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and, after integration by parts,

+
S
<
<
o
<
I
=
o
=
=
<
=
T
3
8
=

< —a/ Vg (d)-Vudx
Q

+ /Q il v ) o) )

where we have applied the fact that m{, > 0. Integration by parts once again yields

d
4 ma(ﬁ)udxga/ e ()AL d
dr Q. Q!

/,(fl(ug Vé Wg) fl(u,v,w)),umix(ﬁ)dx.

Finally, we can integrate in time to deduce that

| met@mas< [ mati omdrta [ [ ot
+/0 /;(fl(”‘?’vé’wé)‘f1<”»V’W))um&<ﬁ)dxd/.

The Lebesgue Dominated Convergence Theorem allows us to pass to the limit ¢ — 0O in the last
inequality to obtain

t
/ ()| dr < / ()| dr +a / / A dxdr’
Q Q 0 Ja

‘|‘/0 Q,r(fl(uf’vi’wé)_fl(”7V7W))NSgn(ﬁ)dxdt’

where
1 if z >0,
sgn(z) =< 0 ifz=0,
—1 if z <O0.

We apply the Holder inequality and to estimate the integral containing Apt so that

1/2
t t t
a/ 4| Ap dxds’ < va <a/ |m2dxdz’) (/ / (A,u)zdxdt’>
0 Ja 0 Ja 0 Ja
<Va* O T|Apll2S|

17
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where we have assumed without loss of generality that a < a* for some a* > (ﬂ Whence, we obtain

[ lilnac< [ a0+l
Q Q!

i (36)
[ Uilagvgwg) = filuoomusen(iydsar
where C7 = Va*Ci T || Al ;2 (g1
Analogously, by using and we can prove that
[ 1swlnas< [ [90)nder el
r r ; (37)
4[] (slugvgiwg) = faluenw)sgn() e’
0 Jo
and
[ pelnac< [ po)lnas el
' (38)

r

+/0 /Q,r(]%(”i"’é?Wé)_f3(”’V»W))IJSgn(W)dxdt’

where Cs = /dC\ T ||Apt]| 2y and Co = VT [|Ap[ 12
To estimate the nonlinearities, we first remark that

Ji(ug,ve,we) — fi(u,v,w) = it — it — (ugve —uv) +s(ugwe —uw) +E\9

(0 lug +vg) —9(utv))

IS B 1A_+s_A+sA_+1A
= 0= Qi — S0 — AV + Wb+ S W+ -9
1
(g + )~ o(utv))
where we have used the notation ¢ (z) = p(z)z and a trivial expansion
1 1
ab—cd:§(a+c)(b—d)+§(a—c)(b+d)
for any real numbers a, b, c and d. Similarly we derive
oo 1l 1. s s, 1,
folug,ve,we) — fa(u,v,w) =9 — v i 2uv—|—2vw+2vw 2

g, ve, we) — f3(tt,v,w) = bid — bibp — %ﬁvf/— %ﬁw- gm— gﬁw.

'We consider the problem with vanishing diffusion a — 0.
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By applying the assumption of Lipschitz continuity of ¢ we obtain

Ji —// sgn(d) (fi(ug,ve,we) — fi(u,v,w)) pdxds’

since i|@t| > 0,0 <w <2 and 0 < i < 2Ce. Similarly,
t
J ::/ / sgn(?) (fz(ué:,vé,wé) — fo(u,v,w)) pdxdr’
0 Ja

1 1 1 1
S/O /Q/r{\\9|—Esgn(\?)m—E\ﬁ\ﬂ+s|ﬁ|+sc€m,,_EM
C .
+%’ﬁ+§|}udxdt’

and
J3 —/ \/g\z/ Sgn f3 ué Vé Wé) f3<u7v’w))‘udxdt/
A ~ & .- & .
// b|w|— bw|w|——sgn(w) Wil — = Wi — = sgn(i)iw?
—§|W|V}udxdt
t
S// {bW]+gla| +g|[} pdxdr”

0 Jo

Altogether,

v(|af+ sgn(v)a)

| =

t
1
st [ {lals1olol - atol+ sentay) -
0 Jar

_é(w — sgn(i)9) + (s+ )| + (s+g)|9]

CLlp (

+2—=(|a |+|v|)+2ng|w|}udxdt'

C . t
L’P,b+2sc€}//(|ﬁ|+|ﬁ|+|m)udxdr’
€ 0 Jo

§max{1+s+g+2
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since (|9| + sgn(@)?) > 0, v(|a| + sgn(\?)ﬁ) >0 and [9| — sgn(d4)P > 0. Hence, we find a positive
constant C}, = max {1 +s+g+2 b+2ng} such that

t
Ji+0+7s gcfo/ / (|| + [9] + W] e dxdr’. (39)
0 Jo
By adding all the estimates (36)-(39) together we deduce that

/<m<r>|+|v<r>r+|w<r>r>udx</ (1(0)] + [9(0)| + () )t dx
5

r

+(Cr+Cs +Co)|E| +CEy / / (1a] + 18] + [ dxdr’
for t > 0. The Gronwall inequality implies that
[ a1 1901+ o Dur < ([ (0)1+ 1501+ o) s

+(Cr+Cy +c9)|a§|)ecfoT.

Thanks to the uniform boundedness of the initial data in Q’,, there exists a positive function @ such
that () — 0as & — 0 and

/Q/(|ﬁ(0)\ +P(0)]+ #(0) Judr < @(6)

r

for each x € Q. and & € RY such that |§| < r. Thus, we deduce the existence of a function p(&)

satisfying
//|u|+|v|+|w|dxdt<// 1] + 9] + W) dedr

(&) + &) 0" = p(&)
and p(&) — 0 for || — 0. O

Corollary 3.8. The sequence {u, .0 is relatively compact in L*(Qr).

Proof. We deduce from (29) that the L2-differences of time translates of u, tend to zero as the trans-
lation parameter 7 tends to zero. As for differences of space translates, we obtain

/ (&) — g x.1))? dx < 2supltg (.| / g &) — g (e, 1) d
Q, Q, Q,
§2C£/Q|ua(x+§,t)—ua(x,t)|dx

for any # € (0,T], where we have used the L™-bound for u,. Integration in time and the inequal-
ity (35) from Lemma 3.7]yield

T
/ / (a0 &,1) — ;1)) dedr < 2Cep(E),
0 "
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where the right-hand-side tends to zero uniformly in a as & — 0. Moreover, similarly as in Corol-
lary [3.6] we deduce that

T T
/ /(ua(x,t))zdxdrgcgygyr and / / (ta (1) 2 dxdt < 2C2T|9Qr
T-1JQ 0o Jaa,

The Fréchet-Kolmogorov Theorem (3.3 applied to {u,},~0 allows us to conclude the relative com-
pactness of the sequence {u, },~0 in L=(Q7). O

Corollary 3.9. There exist a subsequence {(ug,,Va,,Wa,) }a,>0 and functions u,v,w € L*(Qr) such
that

(tta,, Va,, Wa,) — (u,v,w) strongly in [L*(Qr)]* and a.e. in Or,
(Va,:Wa,) — (v,w) weakly in [L*(0,T:H' (Q))]?

as a, — 0.

Proof. The estimates (16)), (26) and together with Corollaries [3.6|and [3.8|and Remark [3.1]imply
the existence of a triple (u,v,w) € [L*(Qr)]? satisfying (14) and such that (v,w) € [L?>(0,T; H'(Q))]?
and (v;,w;) € [L*(0,T;(H'(Q)))]?, and a subsequence {(uy,,Va,, Wa, ) }a,~0 such that

(uan7van7wan) — (M,V, W) in every Lp(QT)?
p€[l,o),asa, — 0. O

Proof of Theorem Repeatedly using the Lebesgue Dominated Convergence Theorem and Corol-
lary [3.9] allow us to pass to the limit a = a, — 0 in the weak formulation (20), (2I) and (22)) to
obtain 1D and . The regularity result that (v,w) € [sz’l(Q x (8,T))]? for all § € (0,T)
follows from [/] (Lemma 3.4 on p. 206).

The uniqueness of the solution can be proved in a classical way by testing the equations for
U=u—u, V=vi—vyand W=w; —wy by U,V, and W, respectively, where (u,v;,w;) and
(uz,v2,wy) are two solutions of Problem (£?) such that 0 < uj,uy,vy,vy < Ce and 0 < wy,wy < 1.
The uniform bounds (14), Lipschitz continuity of ¢(z) = p(z)z and the Young inequality allow us to
find a positive constant C(€) such that

d
—/(U2+V2+W2) §C(e)/(U2+V2+W2). (40)
dr Q Q
Indeed, from the equation for U we obtain

1d 2 2 2 2 2

S = {U — (U1 + ) U — U — UV + swiU? + susUW

2 dr Q Q

1

SO+ v1) = 0l +v))U+ UV,

1d
__/U2§/(1+s)U2+Ce/!UV|+sCe/!UW!
2dt Jo Q Q Q

Cli 1
Lp/|(U+V)U!+—/|UV|.
€ Jo €Jo

21
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The Young inequality then gives the first part of (40), namely,

d
— [ U< C(s)/(U2+V2-I-W2).
dr Q Q

Analogously we obtain the estimates for V and W. The uniqueness then follows form the Gronwall

inequality applied to (40). O

4 Concluding remarks

In this paper we have proposed a reaction-diffusion/ODE model describing the interaction of farmers
and hunter-gatherers in the Neolithic transition in Europe and addressed the fundamental question
of existence and uniqueness of the solution of the system. This model is a combination of a Lotka-
Volterra structure between the farmers and hunter-gatherers and the superimposed interaction between
sedentary and migrating farmers. A key feature of this model is that the sedentary and migrating
farmers convert to each other depending on the total density of farmers. Intuitively speaking, if
the total density of farmers is relatively large, the sedentary farmers tend to actively convert to the
migrating ones because of overcrowding, while if the total density of farmers is relatively small, the
situation is reversed. As explained in the assumption (A2), this mechanism reminds the so-called
population pressure effect in the farming population.
By passing to the limit in (5)) as € — 0, we formally obtain

p(F)F = (1= p(F))F,

that is,
B = p(F)F (41)

where F = Fj + F,. On the other hand, adding the first two equations in (3] together gives

F,=AF,+ (1 —F)F +sFH,

(42)
H, = AH +b(1 — H)H — gFH.
Therefore, in the limit € — 0, by substituting in we obtain
F,=A(p(F)F)+(1—-F)F +sFH, 43)
H, = AH +b(1 —H)H — gFH.
The first equation in (43) can be rewritten as
F, =div(D(F)VF)+ (1 — F)F +sFH, (44)

where D(F) = p/(F)F + p(F). Since D(F) = 0 whenever F = 0, then the equation is a degener-
ate, nonlinear diffusion equation. The diffusion D(F) for p(F) = p,(F;F.) withm =2 and F,. = 1,
where p,,(F; F;) is defined by , is shown in Fig.|5| The difference between the standard reaction-
diffusion (F, H)-system with linear diffusion stated in (I)) and the model {@3) is obvious. Of course,
if p is a constant function, then coincides with (T)).

The main purpose of this paper was to give a comprehensive introduction into modelling the Ne-
olithic transition from hunting-gathering to farming by using fundamental mathematical framework.
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Figure 5: Functional form of D(F) = p/(F)F + p(F) in for p(F) = pm(F; F) defined by (4) with
m=2and F. = 1.

We do not pursue the study of the large time behaviour of the solution of (3)-(7) as well as the rigor-
ous derivation of from (5) as € — 0 in the present paper. These will be reported in forthcoming
works.

Finally, we remark that the proposed model with a possibly modified interspecies dynamics can
be applied to a variety of other biological and socio-economical migrations. For example, one can
imagine a population of a predator (e.g., wolves) that follow the same “migration rules” as imposed
by the assumptions (A1)-(A3). In particular, a predator occupying a territory with the sufficient food
resources for its survival, stays in that territory. On the other hand, if the population of the predator
grows to a certain size in this territory, some individuals leave the place and search actively for another
uninhabited place or a place with low density of the predator. A prey can migrate freely and randomly.
Another example may include a population that migrates into regions occupied by former residents.
The migrants may decide to stay in a region or move according to the total population of migrants
since, for example, a high density of migrants may mean less work possibilities for them. On the other
hand, migrants can also decide to stay or move according to a “local rule”, e.g., language spoken, so
in that case they would prefer to move from a place with low to high density of people speaking the
same language. In this scenario, a decreasing function p in the model (5) has to be assumed. Of
course, no intense conversion of the former residents into migrants should be expected even though
it cannot be completely excluded and the diffusion of the former residents should be small or even
neglected from the modelling.
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