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Abstract
We study the reaction-diffusion model that consists of equations that govern the spatio-temporal
evolution of sedentary and migrating farmers and hunter-gatherers in the Neolithic transition.
Ecologically, the model stems from the fact that a lifestyle of agriculture and settlement, as it
allows for a larger population, is evolutionary advantageous than hunting and gathering. There-
fore, in our modelling framework, we assume that farmers do not migrate unless the population
density pressure forces them. We prove the global well-posedness of the system and, in con-
trast to the previous modelling work on the transition from hunting and gathering to farming, we
show numerically that for a suitable value of a “stay-or-migrate” threshold the model is capable of
reproducing the rate of spread of farming that corresponds to the archeological findings in Europe.
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1 Introduction
Mathematical modelling plays an increasingly important role in ecology and evolution. Good math-
ematical models with advanced data analysis improve our understanding of how the dynamics of
species, including human populations are determined by fundamental biological conditions and pro-
cesses. The Neolithic transition in Europe involving the demographic shift from hunting and gathering
to farming is one of such examples that can be fruitfully modelled mathematically.
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Figure 1: Spread of early farming in Europe. The site of Jericho is taken as the presumed centre of
diffusion in this case. The points correspond to sites providing estimates of the time of arrival of early
farming in different parts of Europe [2, 3]. The figure taken from [2], reprinted by permission from
the Royal Anthropological Institute of Great Britain and Irelands.

The Neolithic transition in Europe started around 10000 years ago. Radiocarbon dating has pro-
duced a large amount of evidence regarding this transition in Europe. In particular, it follows from the
data that the transition from foraging to agriculture was steadily shifted with an almost constant ve-
locity that is roughly estimated to be 0.8∼1.2 km/year, see Fig. 1 [2, 3, 17]. The question that arises is
why and how the Neolithic transition evolved with constant velocity? In order to answer this question
theoretically, as a natural extension of the Fisher-KPP equation [13], the following reaction-diffusion
model involving the conversion of hunter-gatherers to farmers was proposed in [2, 3]:{

Ft = dF∆F + rF(1−F/KF)F + eFFH,

Ht = dH∆H + rH(1−H/KH)H− eHFH,
(1)

where F(x, t) and H(x, t) are, respectively, the densities of the farmer and hunter-gatherer populations
at the time t > 0 and the position x in the space domain; dF , rF and KF (resp., dH , rH and KH)
are, respectively, the random dispersal rate, the intrinsic growth rate and the carrying capacity of
the farming (resp., hunting-gathering) population. The acculturation (or conversion) rates between
hunter-gatherers and farmers are denoted by eF and eH . All these rates are positive constants.

Let us consider (1) in a bounded domain Ω. We assume that F and G satisfy homogeneous
Neumann boundary conditions as well as the initial conditions

F(x,0) = F0(x), H(x,0) = H0(x), (2)

where F0 and G0 are nonnegative and F0 is compactly supported in Ω. It can be shown both nu-
merically and analytically (see, e.g., [19]) that, whenever eHKF > rH , then the spatially constant
equilibrium (0,KH) is unstable, whereas (KF ,0) is asymptotically stable. Therefore (1) is a monos-
table system. Ecologically, this implies that hunter-gatherers are completely converted into farmers,
which is in close agreement with the observations [3]. Thus, the system (1) seems to be a plausible
model for the transition from hunting-gathering into farming. A question of interest is then whether
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the observed transition velocity of 0.8∼1.2 km/year can be predicted by this model? For this ques-
tion, we have the following analytical result: the one dimensional system (1)-(2) with the boundary
conditions

(F,H)(−∞) = (KF ,0), (F,H)(+∞) = (0,KH),

which emerge from the observation that the initial population of hunter-gatherers is completely re-
placed by the population of farmers after large time, possesses indeed a travelling wave solution with
the minimal velocity c∗ given by

c∗ = 2
√

dF(rF + eFKH),

see [4]. It is shown in [2] that dF = 61.76 km2/year and rF = 0.032/year, respectively. Whence the
speed of the farming spread predicted by the model (1) is larger than 2.8 km/year and, consequently,
much faster that the observed transition velocity of about 1 km/year on average.

For this problem, Fort studied the dispersal of farmers from the available data and gave the esti-
mate dF = 15.44 km2/year [16, 14]. However, this implies that c∗ > 2

√
dFrF = 1.4 km/year which

is still larger than the observation. Then Fort and Méndez proposed a time-delayed Fisher-KPP equa-
tion which takes into account the newborn children of farmers that usually can migrate only after
some time, namely, after they are grown-up [15]. They showed that the velocity of the traveling wave
solution of this equation is given by

c =
2
√

dFrF

1+ τrF/2

where τ is the residence time, i.e., the time interval between the migration of parents and, presumably,
the subsequent migration of children [15]. As a result, the velocity of the farming spread can be
slowed down by taking τ suitably large (say, τ = 25 years).

In this paper we aim to propose a new model for the Neolithic transition from hunter-gatherers
to farmers which will possibly possess expanding velocity that is close to the observed one. Our
motivation for the ‘farmer-hunter’-modelling is that farmers when settled in a favourable environment
for farming prefer to stay there unless they are forced to move. The driving force for migration, which
we have in mind, is the farmer overcrowding. Therefore, our essential assumptions on the migration
of farmers and hunter-gatherers are as follows:

(A1) Farmers have a sedentary lifestyle;

(A2) If the density of the sedentary farmers becomes high, some of them start migrating and dispers-
ing randomly, as if the population pressure effect occurs;

(A3) Sedentary and migrating farmers convert to each other depending on the total density of the
farmers;

(A4) Hunter-gatherers always disperse randomly, independently of the farmers.

We remark that (A1)-(A3) are the essential assumptions which are different from the assumptions
in the previous models. In addition to (A1)-(A4), the dynamics of farmers and hunter-gatherers is
assumed to obey the logistic growth and the conversion of hunter-gatherers into farmers is taken to be
proportional to the population densities.
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In view of (A1)-(A4), we propose the following macroscopic three-component nondimensional-
ized system: 

F1t = (1−F)F1 + s1F1H− 1
ε
(p(F)F1− (1− p(F))F2) ,

F2t = d∆F2 +(1−F)F2 + s2F2H +
1
ε
(p(F)F1− (1− p(F))F2) ,

Ht = ∆H +b(1−H)H−g1F1H−g2F2H,

(3)

where F1, F2 and H represent the densities of sedentary farmers, migrating farmers and hunter-
gatherers, respectively, and F = F1 +F2 is the total density of farmers. Further, b is the intrinsic
growth rate for the population of hunter-gatherers, s1 and g1 (resp., s2 and g2) are the acculturation
rates between F1 and H (resp., F2 and H). The probability density function p is the normalised con-
version rate between F1 and F2 such that

(Hp)

p ∈C1(R+), 0≤ p(z)≤ 1 ∀z ∈ R+,
d
dz

p(z)≥ 0 ∀z ∈ R+,

φ : z 7→ p(z)z is Lipschitz continuous with a Lipschitz constant CLip.

For example, one may consider p of the form

p(F) = pm(F ;Fc) =
Fm

Fm +Fm
c
, (4)

where m is a positive integer and Fc is a switching value for the conversion between F1 and F2, a

density threshold at which the probability of remaining sedentary and migrating is equal. Finally,
1
ε

is the speed of conversion between F1 and F2.
In this paper we study the system (3) under the additional assumption that s1 = s2 =: s, g1 = g2 =:

g, dF =: d and dH = 1, namely,
F1t = (1−F)F1 + sF1H− 1

ε
(p(F)F1− (1− p(F))F2) ,

F2t = d∆F2 +(1−F)F2 + sF2H +
1
ε
(p(F)F1− (1− p(F))F2) ,

Ht = ∆H +b(1−H)H−gFH

(5)

in an open bounded domain Ω with the homogeneous Neumann boundary conditions

∂νF2 = ∂νH = 0, (6)

where ν is the outward normal vector on ∂Ω and with the nonnegative initial conditions

(F1,F2,H)(x,0) = (F10,F20,H0)(x). (7)

First, we show numerically the behaviour of a solution of the two-dimensional problem (5)-(7)
with p(F) = p2(F ;Fc) in ΩL = {x = (x,y) ∈ R2 |0 ≤ x ≤ L,0 ≤ y ≤ L}, where F10 is compactly
supported in ΩL, F20 ≡ 0 and H0 ≡ 1 in ΩL except in the region where F10 > 0, as shown in Fig. 2(a).
In this modelling setting, only sedentary farmers F1 and hunter-gatherers H initially exist. However,
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(a) t = 0

(b) t = 10

(c) t = 40

(d) t = 100

Figure 2: Spatial patterns of (F1,F2,H) of (5)-(7) in Ω50 where s = 5.0, ε = 0.01, Fc = 0.5, d = 0.1,
b = 1.0 and g = 4.0. Here F1 is rescaled by 3×F1.

even if F2 does not initially exist, it eventually appears due to the conversion from F1 as shown in
Fig. 2(b). Then, the densities of the farming populations F1 and F2 expand uniformly throughout the
domain, and farmers (F =F1+F2) completely replace the population of hunter-gatherers who become
extinct after large time. A characteristic property of (4) is that the expanding velocity of the total
population of farmers F becomes slower as Fc increases, as shown in Figures 3 and 4. These figures
suggest that the transition velocity can be slowed down by taking Fc suitably large. We hypothesise
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(a) Fc = 0.1 (b) Fc = 1 (c) Fc = 2

Figure 3: Spatial patterns of F(x,y,80) of (5)-(7) in Ω100, where the parameters are the same as in
Fig. 2 except for Fc.

Figure 4: Average distance xr between the front of F in Fig. 3 and the origin (0,0).

that the threshold Fc, in a sense, reflects advancing farming technology in the Neolithic transition.
Ecologically speaking, the elevated value of Fc can be interpreted as a certain level of development
of farming and food-producing technology and associated sedentary lifestyle traits such as pottery
making, domestication of various plants and animals (and related social changes, security, trading)
that, as suggested by Childe in [8], can support a much larger population density than hunting and
gathering and thus provide the basis for densely populated settlements. With all this said, the extent
of how agriculture affected the decision-making to stay or migrate in the Neolithic transition can be
modelled by the parameter Fc. We therefore propose the system (5) as a plausible dispersal model for
describing the interaction between farmers and hunter-gatherers in the Neolithic transition.

The numerical results bring us to search for a rigorous setting. Hence, the purpose of this paper
is to prove the existence and uniqueness of the global in time solution. However, the general theory
on reaction-diffusion systems cannot be applied directly due to the lack of regularity. Therefore, a
suitable well-posedness theory has to be developed.
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From now on, we use the unknowns (u,v,w) instead of (F1,F2,H) and rewrite the system as

(P)



ut = (1−u− v)u+ suw− 1
ε
(p(u+ v)u− (1− p(u+ v))v) in QT ,

vt = d∆v+(1−u− v)v+ svw+
1
ε
(p(u+ v)u− (1− p(u+ v))v) in QT ,

wt = ∆w+b(1−w)w−g(u+ v)w in QT ,

∂νv = ∂νw = 0 on ΓT ,

(u(x,0),v(x,0),w(x,0)) = (u0,v0,w0) in Ω,

where Ω is an open bounded domain in RN with a sufficiently smooth boundary (e.g., ∂Ω ∈ C2),
QT = Ω× (0,T ) and ΓT = ∂Ω× (0,T ) for any T > 0; ν is the unit normal vector on the boundary
ΓT pointing outward of QT . Moreover, we suppose that the initial functions u0, v0 and w0 satisfy

(H0) u0,v0,w0 ∈C(Ω) and u0,v0 ≥ 0, 0≤ u0 + v0 ≤ 1, 0≤ w0 ≤ 1 in Ω.

We will write

f1(u,v,w) = (1−u− v)u+ suw− 1
ε
(p(u+ v)u− (1− p(u+ v))v) , (8)

f2(u,v,w) = (1−u− v)v+ svw+
1
ε
(p(u+ v)u− (1− p(u+ v))v) , (9)

f3(u,v,w) = b(1−w)w−g(u+ v)w. (10)

Definition 1.1. A triple of functions (u,v,w) is a weak solution of Problem (P) if

i) u ∈C0,1(0,T ;L∞(Ω)),

v,w ∈ L∞(0,T ;L2(Ω)) ∩ L2(0,T ;H1(Ω)), vt ,wt ∈ L2(0,T ;(H1(Ω))′),

ii) u,v,w satisfy

−
ˆ

Ω

u0ξ (0)dx =
¨

QT

f1(u,v,w)ξ +uξt dxdt (11)

−
ˆ

Ω

v0ξ (0)dx =
¨

QT

dv∆ξ + f2(u,v,w)ξ + vξt dxdt (12)

−
ˆ

Ω

w0ξ (0)dx =
¨

QT

w∆ξ + f3(u,v,w)ξ +wξt dxdt (13)

for any test function ξ ∈C2,1(QT ) such that ξ (x,T ) = 0 in Ω and ∂νξ = 0 on ∂Ω× [0,T ].

The main theorem can be stated as follows:

Theorem 1.1. Suppose that the hypotheses (Hp) and (H0) are satisfied, then Problem (P) possesses
a unique weak solution (u,v,w) such that

0≤ u,v≤Cε and 0≤ w≤ 1 in QT (14)

where Cε = 2(1+s+1/ε). Moreover, (v,w)∈ [W 2,1
p (Ω×(δ ,T ))]2 for all 0< δ < T and all p∈ [1,∞).
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The idea of the proof is to consider a related uniformly parabolic PDE/PDE problem, where we
add diffusion to the equation for u,

(Pa)



ut = a∆u+(1−u− v)u+ suw− 1
ε
(p(u+ v)u− (1− p(u+ v))v) in QT ,

vt = d∆v+(1−u− v)v+ svw+
1
ε
(p(u+ v)u− (1− p(u+ v))v) in QT ,

wt = ∆w+b(1−w)w−g(u+ v)w in QT ,

∂νu = ∂νv = ∂νw = 0 on ΓT ,

(u(x,0),v(x,0),w(x,0)) = (u0,v0,w0) in Ω,

for some a > 0. We prove that Problem (Pa) possesses a unique classical solution (ua,va,wa) ∈
[C2,1(Ω×(0,T ]) ∩C(Ω× [0,T ])]3 which converges to the unique solution of Problem (P) as a → 0.
The proof is thus based on a standard approach where the solution to the problem which we study is
approximated by a sequence of regular solutions of related problems, the existence of which follows
from the classical theory of semilinear equations. Other approaches such as direct fixed point method
based upon analytic semigroups could be used; however, these approaches may bring other difficulties
to be dealt with.

We conclude this introductory part with a remark that there exists an excessive amount of literature
on reaction-diffusion equation. We mention the monographs by N. F. Britton [6], P. C. Fife [12], W.-
M. Ni [26] and J. Smoller [27], and the articles [1, 10, 11, 18, 23, 24, 25].

2 Existence of a unique solution of Problem (Pa)

Lemma 2.1. Suppose that the hypotheses (Hp) and (H0) are satisfied and suppose that (ua,va,wa) is
the unique solution of Problem (Pa). Then (ua,va,wa) remains nonnegative for all times.

Proof. Let us consider the auxiliary problem

(P+
a )



ut = a∆u+(1−u− v)u+ suw− 1
ε
(p(u+ v)u− (1− p(u+ v))v) in QT ,

vt = d∆v+(1−u− v)v+ svw+
1
ε

(
p(u+ v)u+− (1− p(u+ v))v

)
in QT ,

wt = ∆w+b(1−w)w−g(u+ v)w in QT ,

∂νu = ∂νv = ∂νw = 0 on ΓT ,

(u(x,0),v(x,0),w(x,0)) = (u0,v0,w0) in Ω,

where u+ = max{u, 0}. Moreover, let us denote

Lu(z) = zt−a∆z− (1− z− v)z− szw+
1
ε

p(z+ v)z− 1
ε
(1− p(z+ v))v,

Lv(z) = zt−d∆z− (1−u− z)z− szw− 1
ε

p(u+ z)u++
1
ε
(1− p(u+ z))z,

and
Lw(z) = zt−∆z−b(1− z)z+g(u+ v)z. (15)
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Then, by the standard comparison principle applied subsequently to each equation, we obtain the
non-negativeness of the solution. Indeed, on the one hand we have Lv(0) = −p(u)u+/ε ≤ 0 which
implies that v≥ 0 in Ω× [0,∞). On the other hand, Lu(0) =−(1− p(v))v/ε ≤ 0 for v≥ 0. Therefore,
u≥ 0 for each (x, t) ∈Ω× [0,∞). Finally, Lw(0) = 0 implies w≥ 0 in Ω× [0,∞).

Thus, for any nonnegative initial data (u0,v0,w0) ∈ R3
+ the unique solution of Problem (P+

a ) is
also the solution of Problem (Pa), which completes the proof.

Theorem 2.2. Let a and ε be positive constants and suppose that the hypotheses (Hp) and (H0) are
satisfied. Problem (Pa) admits a unique classical solution (ua,va,wa) ∈ [C2,1(Ω× (0,T ])∩C(Ω×
[0,T ])]3 such that

0≤ ua,va ≤Cε and 0≤ wa ≤ 1 in QT (16)

where Cε = 2(1+ s+1/ε).

Proof. The existence of the unique classical solution (ua,va,wa) of Problem (Pa) follows from the
classical theory of semilinear equations, e.g., Proposition 7.3.2 [22] (p. 277). The positivity of the
solution is proved in Lemma 2.1.

To find an upper bound for ua and va let us consider the system (P#),

(P#)



ut−a∆u = F1(u,v,w) in QT ,

vt−d∆v = F2(u,v,w) in QT ,

wt−∆w = F3(u,v,w) in QT ,

∂νu = ∂νv = ∂νw = 0 on ΓT ,

(u(x,0),v(x,0),w(x,0)) = (u0(x),v0(x),w0(x)) in Ω,

where
F1(u,v,w) = max{ f1(z1,z2,z3); z1 = u, 0≤ z2 ≤ v, 0≤ z3 ≤ w},
F2(u,v,w) = max{ f2(z1,z2,z3); 0≤ z1 ≤ u, z2 = v, 0≤ z3 ≤ w},
F3(u,v,w) = max{ f3(z1,z2,z3); 0≤ z1 ≤ u, 0≤ z2 ≤ v, z3 = w},

and f1, f2 and f3 are defined by (8), (9) and (10), respectively. We note that the nonlinearities f1, f2
and f3 are continuous in their variables and that

Fk(u,v,w)≥ fk(u,v,w), k = 1,2,3. (17)

Moreover, we see that

F1(u,v,w) = max
0≤z2≤v, 0≤z3≤w

{
(1−u)u−uz2 + suz3−

1
ε

p(u+ z2)(u+ z2)+
z2

ε

}
≤ (1−u)u+ suw+

v
ε
,

F2(u,v,w) = max
0≤z1≤u, 0≤z3≤w

{
(1− v)v− z1v+ svz3 +

1
ε

p(z1 + v)(z1 + v)− v
ε

}
≤ (1− v)v+ svw+

1
ε

p(u+ v)(u+ v)− v
ε
,

F3(u,v,w) = max
0≤z1≤u, 0≤z2≤v

{b(1−w)w−g(z1 + z2)w}= bw(1−w),
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and that the system (P†),

(P†)



ut−a∆u = F̃1(u,v,w) in QT ,

vt−d∆v = F̃2(u,v,w) in QT ,

wt−∆w = F̃3(w) in QT ,

∂νu = ∂νv = ∂νw = 0 on ΓT ,

(u(x,0),v(x,0),w(x,0)) = (u0(x),v0(x),w0(x)) in Ω,

where
F̃1(u,v,w) = (1−u)u+ suw+

v
ε
,

F̃2(u,v,w) = (1− v)v+ svw+
1
ε

p(u+ v)(u+ v)− v
ε
,

F̃3(w) = b(1−w)w,

is a cooperative system since ∂vF̃1 = 1/ε ≥ 0, ∂wF̃1 = su ≥ 0, ∂uF̃2 = (p′(u + v)(u + v) + p(u +
v))/ε ≥ 0, ∂wF̃2 = sv≥ 0 and ∂uF̃3 = ∂vF̃3 = 0, see [20] on p. 168. Therefore it admits a comparison
principle, [20] (Theorem D, p. 170). In particular, it follows from the comparison principle and (17),
which in turn implies the inequalities

F̃k(u,v,w)≥ fk(u,v,w), k = 1,2,3, (18)

that the solution (ua,va,wa) of Problem (Pa) is a lower solution for Problem (P†) in Ω× [0,∞).
Indeed, set

L1(u,v,w) = ∂tu−a∆u− F̃1(u,v,w),

L2(u,v,w) = ∂tv−d∆v− F̃2(u,v,w),

L3(u,v,w) = ∂tw−∆w− F̃3(w).

Then,

L1(ua,va,wa) = ∂tua−a∆ua− F̃1(ua,va,wa) = f1(ua,va,wa)− F̃1(ua,va,wa)≤ 0,

L2(ua,va,wa) = ∂tva−d∆va− F̃2(ua,va,wa) = f2(ua,va,wa)− F̃2(ua,va,wa)≤ 0,

and
L3(ua,va,wa) = ∂twa−∆wa− F̃3(wa) = f3(ua,va,wa)− F̃3(wa)≤ 0.

by (18). Thus, we obtain

0≤ ua ≤ u, 0≤ va ≤ v and 0≤ wa ≤ w in Ω× [0,∞) (19)

where (u,v,w) is the solution of Problem (P†). Therefore any upper bound for (u,v,w) is also the
upper bound for (ua,va,wa).

Let (U,V,W ) be the solution of the ODE problem
U ′ = F̃1(U,V,W ),

V ′ = F̃2(U,V,W ),

W ′ = F̃3(W ),

(U(0),V (0),W (0)) = (‖u0‖L∞(Ω),‖v0‖L∞(Ω),‖w0‖L∞(Ω)).
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Again by the comparison principle, (U,V,W ) is an upper solution for Problem (P†) (and conse-
quently for Problem (Pa) by (19)). We remark that 0 ≤W ≤ 1. We set Z = U +V and obtain the
equation

Z′ = (1−U)U + sUW +
V
ε
+(1−V )V + sVW − V

ε
+

1
ε

p(U +V )(U +V )

= Z + sZW − (U2 +V 2)+
1
ε

p(Z)Z

≤
(

1+ s+
1
ε

)
Z− 1

2
Z2

since 0 ≤ p ≤ 1 and thanks to the elementary inequality a2 + b2 ≥ (a+ b)2/2 for a,b ∈ R+. Set
Cε = 2(1+ s+1/ε) and define Z as the solution of the initial value problem (P‡),

(P‡)

{
Z′ = (Cε −Z)Z/2,

Z(0) = Z0,

where Z0 = ‖u0‖L∞(Ω)+‖v0‖L∞(Ω) ∈ [0,2]. Then Z is a lower solution for (P‡) and, by the compari-
son principle,

0≤ Z =U +V ≤ Z ≤Cε

for each t ≥ 0. Altogether,
0≤ ua ≤ u≤U ≤Cε ,

0≤ va ≤ v≤V ≤Cε ,

0≤ wa ≤ w≤W ≤ 1

in Ω× [0,∞).

Remark 2.1. Because of regularity results for parabolic problems (e.g. [21], Theorem IV.5.3) we have
(ua,va,wa) ∈ [C2+α,(2+α)/2(QT )]

3 for all α ∈ (0,1) given that the initial data are sufficiently smooth.
Remark 2.2. We note that the construction of (F1,F2,F3) of (P#) follows the classical approach of
J. Smoller [27], where (F1,F2,F3) is called the maximal vector field associated to the vector field
( f1, f2, f3). The solution of the ODE problem associated to (P#) is then shown to be an upper
solution for Problem (Pa) by the comparison Theorem 14.16 in [27]. Since it is impossible to write
(F1,F2,F3) explicitly in our case, we cannot use this vector field directly.
Remark 2.3. The upper bound for wa can be also obtained immediately by the comparison principle
since Lw(1)≥ 0 for ua,va ≥ 0 and Lw defined by (15).
Remark 2.4. For further use, let us mention that the classical solution (ua,va,wa) of Problem (Pa)
satisfies the integral equalities

−
ˆ

Ω

u0ξ (0)dx =
¨

QT

aua ∆ξ + f1(ua,va,wa)ξ +uξt dxdt (20)

−
ˆ

Ω

v0ξ (0)dx =
¨

QT

dva ∆ξ + f2(ua,va,wa)ξ + vξt dxdt (21)

−
ˆ

Ω

w0ξ (0)dx =
¨

QT

wa ∆ξ + f3(ua,va,wa)ξ +wξt dxdt (22)

for any test function ξ ∈C2,1(QT ) such that ξ (x,T ) = 0 in Ω and ∂νξ = 0 on ∂Ω× [0,T ].
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3 Singular limit problem (Pa) as a→ 0 for ε > 0 fixed
First, we show some a-priori estimates. We always assume that the hypotheses (Hp) and (H0) are
satisfied.

Lemma 3.1. There exists a positive constant C0 independent of the diffusion coefficient a such that¨
QT

u2
a dxdt,

¨
QT

v2
a dxdt ≤C0 (23)

Proof. The function z = ua + va satisfies the equation

zt = a∆ua +d∆va +(1− z)z+ swaz.

We integrate it in space and obtain

d
dt

ˆ
Ω

zdx =
ˆ

Ω

((1− z)z+ swaz) dx≤ (1+ s)
ˆ

Ω

zdx−
ˆ

Ω

z2 dx (24)

≤ (1+ s)
ˆ

Ω

zdx− 1
|Ω|

(ˆ
Ω

z
)2

(25)

where we have used the homogeneous Neumann boundary conditions, the uniform bound 0≤ wa ≤ 1
and the Hölder inequality (

´
z)2 ≤ |Ω|

´
z2. Therefore, in view of (25), y(t) =

´
Ω

z(·, t) satisfies the
equation

y′ ≤ (Cs,|Ω|− y)y/|Ω|, y(0) = y0,

where y0 =
´

Ω
z0 =

´
Ω
(u0 + v0) ≤ |Ω| and Cs,|Ω| = (1+ s)|Ω|. From this equation we deduce the

uniform L1 bound ˆ
Ω

z(t)≤Cs,|Ω|, ∀t > 0.

Integrating (24) in time for t ∈ (0,T ] and using the above estimate giveˆ
Ω

z(T )+
ˆ T

0

ˆ
Ω

z2 ≤
ˆ

Ω

z0 +(1+ s)
ˆ T

0

ˆ
Ω

z≤ |Ω|+(1+ s)TCs,|Ω| =: C0,

which completes the proof.

Lemma 3.2. There exist positive constants C1 and C2 independent of the diffusion coefficient a (but
C1 depends on ε) such that

a
¨

QT

|∇ua|2 dxdt, d
¨

QT

|∇va|2 dxdt ≤C1. (26)
¨

QT

|∇wa|2 dxdt ≤C2. (27)

Proof. Let us multiply the equations for ua and va by ua and va, respectively, and integrate in space.
We obtain

1
2

d
dt

ˆ
Ω

(u2
a + v2

a)+a
ˆ

Ω

|∇ua|2 +d
ˆ

Ω

|∇va|2 +
ˆ

Ω

(ua + va)(u2
a + v2

a)

+
1
ε

ˆ
Ω

{p(ua + va)u2
a +(1− p(ua + va))v2

a}=
ˆ

Ω

(1+ swa)(u2
a + v2

a)+
1
ε

ˆ
Ω

uava

≤ (1+ s+
1

2ε
)

ˆ
Ω

(u2
a + v2

a)

(28)
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where we have used the integration by parts formula, the upper bound wa ≤ 1 and the Young inequal-
ity. In view of (23), integrating (28) in time gives (26).

Similarly, we deduce from the equation for wa that

1
2

d
dt

ˆ
Ω

w2
a +

ˆ
Ω

|∇wa|2 +g
ˆ

Ω

(ua + va)w2
a = b

ˆ
Ω

(1−wa)w2
a ≤ b|Ω|,

thanks to the upper bound wa ≤ 1. Integrating this inequalities in time gives the estimate (27).

Remark 3.1. We remark that the estimate (26) for ua is not uniform in a. By using (16) and the
estimates on the gradients (26) and (27) we obtain, for example,

‖(ua)t‖L2(0,T ;(H1(Ω))′) := sup
‖ϕ‖L2(0,T ;H1(Ω))

≤1

∣∣∣∣∣
ˆ T

0

〈
∂ua

∂ t
,ϕ

〉
(H1)′×H1

dt

∣∣∣∣∣
≤ sup
‖ϕ‖L2(0,T ;H1(Ω))

≤1

{
a‖∇ua‖L2(QT )

‖∇ϕ‖L2(QT )

+ ‖ f1(ua,va,wa‖L2(QT )
‖ϕ‖L2(QT )

}
≤C(ε).

We deduce that ua,va,wa ∈
{

ϑ ∈ L2(0,T ;H1(Ω)), ϑt ∈ L2(0,T ;(H1(Ω))′)
}

as the above calcula-
tions hold for va and wa. As a consequence {(ua,vawa)}a>0 ∈ [C(0,T ;L2(Ω))]3.

The main tool that is used to prove the existence of the solution of Problem (P) is the following
Fréchet-Kolmogorov compactness theorem, e.g. [5], Theorem IV.25 on p. 72; the presented form
below is taken from [9], Proposition 2.5.

Theorem 3.3 (Fréchet-Kolmogorov). Let F be a bounded subset of Lp(QT ) with 1≤ p < ∞. Assume
that

i) for any η > 0 and any subset ω b QT , there exists δ > 0 (δ < dist(ω,∂QT )) such that

‖ f (x+ξ , t)− f (x, t)‖Lp(ω)+‖ f (x, t + τ)− f (x, t)‖Lp(ω) < η

for all ξ ,τ and f ∈F satisfying |ξ |+ |τ|< δ .

ii) for any η > 0, there exists a subset ω b QT such that

‖ f‖Lp(QT \ω) < η

for all f ∈F .

Then F is precompact in Lp(QT ).

Throughout the paper we will consider two subsets Ωr and Ω′r of Ω; in particular, for sufficiently
small r > 0 we define Ωr = {x ∈Ω |B(x,2r)⊂Ω} and Ω′r = ∪x∈ΩrB(x,r), where B(x,r) denotes the
ball in RN with centre x and radius r. We have Ωr ⊂Ω′r ⊂Ω.
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Lemma 3.4. Let r ∈ (0, r̂) for some r̂ > 0 sufficiently small. There exist positive constants C4, C5 and
C6 independent of the diffusion coefficient a such that

ˆ T−τ

0

ˆ
Ωr

(ua(x, t + τ)−ua(x, t))2 dxdt ≤C4τ, (29)

ˆ T−τ

0

ˆ
Ωr

(va(x, t + τ)− va(x, t))2 dxdt ≤C5τ, (30)

ˆ T−τ

0

ˆ
Ωr

(wa(x, t + τ)−wa(x, t))2 dxdt ≤C6τ (31)

for all τ ∈ (0,T ).

Proof. We prove (29) since (30) and (31) can be proved analogously. We can write
ˆ T−τ

0

ˆ
Ωr

(ua(x, t + τ)−ua(x, t))2 dxdt

≤
ˆ T−τ

0

ˆ
Ω

(ua(x, t + τ)−ua(x, t))2 dxdt

=

ˆ T−τ

0

ˆ
Ω

(ua(x, t + τ)−ua(x, t))
(ˆ t+τ

t
∂tua(x, t ′)dt ′

)
dxdt

=

ˆ T−τ

0

ˆ
Ω

(ua(x, t + τ)−ua(x, t))
(ˆ

τ

0
∂tua(x, t + t ′)dt ′

)
dxdt

=

ˆ
τ

0

ˆ T−τ

0

ˆ
Ω

(ua(x, t + τ)−ua(x, t))∂tua(x, t + t ′)dxdt dt ′

=

ˆ
τ

0

ˆ T−τ

0

ˆ
Ω

{
a(ua(x, t + τ)−ua(x, t))∆ua(x, t + t ′)

+ (ua(x, t + τ)−ua(x, t)) f1(ua,va,wa)(x, t + t ′)
}

dxdt dt ′

= I1 + I2.

The first integral with the Laplacian can be estimated in the following way,

I1 := a
ˆ

τ

0

ˆ T−τ

0

ˆ
Ω

(ua(x, t + τ)−ua(x, t))∆ua(x, t + t ′)dxdt dt ′

=−a
ˆ

τ

0

ˆ T−τ

0

ˆ
Ω

∇[ua(x, t + τ)−ua(x, t)] ·∇ua(x, t + t ′)dxdt dt ′

≤ 2aτ

ˆ T

0

ˆ
Ω

|∇ua(x, t)|2 dxdt

≤ 2C1τ

where we have used the Hölder inequality and (26). By using the bounds (16) uniform in the diffusion
coefficient a we can easily find a positive constant C =C(Cε ,T, |Ω|) such that

I2 :=
ˆ

τ

0

ˆ T−τ

0

ˆ
Ω

(ua(x, t + τ)−ua(x, t)) f1(ua,va,wa)(x, t + t ′)dxdt dt ′

14



≤Cτ.

We deduce the inequality (29) from both estimates for I1 and I2.

Lemma 3.5. For each r ∈ (0, r̂) and r̂ > 0 sufficiently small, it holds that
ˆ T

0

ˆ
Ωr

(ua(x+ξ , t)−ua(x, t))2 dxdt ≤ C1

a
|ξ |2, (32)

ˆ T

0

ˆ
Ωr

(va(x+ξ , t)− va(x, t))2 dxdt ≤ C1

d
|ξ |2, (33)

and ˆ T

0

ˆ
Ωr

(wa(x+ξ , t)−wa(x, t))2 dxdt ≤C2|ξ |2 (34)

for all ξ ∈ RN , |ξ | ≤ r where the constants C1 and C2 are given by (26) and (27).

Proof. In the case of (32) we can write

a
ˆ T

0

ˆ
Ωr

(ua(x+ξ , t)−ua(x, t))2 dxdt

= a
ˆ T

0

ˆ
Ωr

(ˆ 1

0
∇ua(x+θξ , t) ·ξ dθ

)2

dxdt

≤ a|ξ |2
ˆ 1

0

ˆ T

0

ˆ
Ωr

|∇ua(x+θξ , t)|2 dxdt dθ

≤ a|ξ |2
ˆ T

0

ˆ
Ω′r

|∇ua(x, t)|2 dxdt

≤C1|ξ |2

due to (26). Analogously we prove (33) and (34).

Corollary 3.6. The sequences {va}a>0 and {wa}a>0 are relatively compact in L2(QT ).

Proof. We see from (30) and (33) (resp., (31) and (34)) that differences of space and time translates
of va (resp., wa) tend to zero uniformly in a in L2 topology as the translation parameter tends to zero.

Moreover, in view of (16) we have that
ˆ T

T−τ

ˆ
Ω

(va(x, t))2 dxdt ≤C2
ε |Ω|τ and

ˆ T

0

ˆ
Ω\Ωr

(va(x, t))2 dxdt ≤ 2C2
ε T |∂Ω|r,

and ˆ T

T−τ

ˆ
Ω

(wa(x, t))2 dxdt ≤ |Ω|τ and
ˆ T

0

ˆ
Ω\Ωr

(wa(x, t))2 dxdt ≤ 2T |∂Ω|r.

which implies that the hypothesis ii) of the Fréchet-Kolmogorov Theorem 3.3 is satisfied. Applying
this theorem to {va}a>0 and {wa}a>0 implies that the sequences {va}a>0 and {wa}a>0 are relatively
compact in L2(QT ).
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Because of the dependence of (32) on the parameter a, we are not able to control L2-differences
of space translates in the case of the sequence {ua}a>0 uniformly in a and to deduce the relative
compactness of {ua}a>0 in L2(QT ) as above. Nevertheless, the desired result can be obtained through
the L1 estimates on differences of space translates.

Lemma 3.7. For each r ∈ (0, r̂) and r̂ > 0 sufficiently small, there exists a positive function ρ(ξ ) such
that ρ(ξ )→ 0 uniformly in a as |ξ | → 0 and

ˆ T

0

ˆ
Ωr

|ua(x+ξ , t)−ua(x, t)|dxdt ≤ ρ(ξ ) (35)

for all ξ ∈ RN , |ξ | ≤ r.

Proof. In this proof only we will write shortly uξ = ua(x+ξ , t), vξ = va(x+ξ , t), wξ = wa(x+ξ , t),
u = ua(x, t), v = va(x, t) and w = wa(x, t) and we will use the following notation:

û = ua(x+ξ , t)−ua(x, t) = uξ −u, ū = ua(x+ξ , t)+ua(x, t) = uξ +u,

v̂ = va(x+ξ , t)− va(x, t) = vξ − v, v̄ = va(x+ξ , t)+ va(x, t) = vξ + v,

ŵ = wa(x+ξ , t)−wa(x, t) = wξ −w, w̄ = wa(x+ξ , t)+wa(x, t) = wξ +w.

We recall that 0≤ ū, v̄≤ 2Cε and 0≤ w̄≤ 2 by (16). We will also consider a smooth convex function
m : R→ R+ such that m ≥ 0, m(0) = 0 and m(r) = |r| − 1/2 for |r| > 1, and define for α > 0
approximations of m by

mα(r) = αm
( r

α

)
.

Then, mα satisfies
mα(r)→ |r| and m′α(r)→ sgn(r)

as α → 0. Furthermore, we define a function µ such that

µ ∈C∞
0 (Ω

′
r), 0≤ µ(x)≤ 1 in Ω

′
r, µ(x) = 1 in Ωr and

|∇µ|, |∆µ| ≤C(r).

First, we multiply the equation for û, i.e.,

∂t û = a∆û+ f1(uξ ,vξ ,wξ )− f1(u,v,w)

by µm′α(û) and integrate in space. We obtain
ˆ

Ω′r

∂t ûµm′α(û)dx = a
ˆ

Ω′r

∆û(µm′α(û))dx

+

ˆ
Ω′r

( f1(uξ ,vξ ,wξ )− f1(u,v,w))µm′α(û)dx
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and, after integration by parts,ˆ
Ω′r

∂tmα(û)µ dx =−a
ˆ

Ω′r

∇û ·∇(µm′α(û))dx

+

ˆ
Ω′r

( f1(uξ ,vξ ,wξ )− f1(u,v,w))µm′α(û)dx

=−a
ˆ

Ω′r

m′α(û)∇û ·∇µ dx−a
ˆ

Ω′r

µm′′α(û)|∇û|2 dx

+

ˆ
Ω′r

( f1(uξ ,vξ ,wξ )− f1(u,v,w))µm′α(û)dx

≤−a
ˆ

Ω′r

∇mα(û) ·∇µ dx

+

ˆ
Ω′r

( f1(uξ ,vξ ,wξ )− f1(u,v,w))µm′α(û)dx

where we have applied the fact that m′′α ≥ 0. Integration by parts once again yields

d
dt

ˆ
Ω′r

mα(û)µ dx≤ a
ˆ

Ω′r

mα(û)∆µ dx

+

ˆ
Ω′r

( f1(uξ ,vξ ,wξ )− f1(u,v,w))µm′α(û)dx.

Finally, we can integrate in time to deduce thatˆ
Ω′r

mα(û)(t)µ dx≤
ˆ

Ω′r

mα(û)(0)µ dx+a
ˆ t

0

ˆ
Ω′r

mα(û)∆µ dxdt ′

+

ˆ t

0

ˆ
Ω′r

( f1(uξ ,vξ ,wξ )− f1(u,v,w))µm′α(û)dxdt ′.

The Lebesgue Dominated Convergence Theorem allows us to pass to the limit α → 0 in the last
inequality to obtainˆ

Ω′r

|û(t)|µ dx≤
ˆ

Ω′r

|û(0)|µ dx+a
ˆ t

0

ˆ
Ω′r

|û|∆µ dxdt ′

+

ˆ t

0

ˆ
Ω′r

( f1(uξ ,vξ ,wξ )− f1(u,v,w))µ sgn(û)dxdt ′

where

sgn(z) =


1 if z > 0,
0 if z = 0,
−1 if z < 0.

We apply the Hölder inequality and (32) to estimate the integral containing ∆µ so that

a
ˆ t

0

ˆ
Ω′r

|û|∆µ dxdt ′ ≤
√

a

(
a
ˆ t

0

ˆ
Ω′r

|û|2 dxdt ′
)1/2(ˆ t

0

ˆ
Ω′r

(∆µ)2 dxdt ′
)1/2

≤
√

a∗C1T‖∆µ‖L2(Ω′r)
|ξ |
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where we have assumed without loss of generality that a≤ a∗ for some a∗ > 01. Whence, we obtain
ˆ

Ω′r

|û(t)|µ dx≤
ˆ

Ω′r

|û(0)|µ dx+C7(r)|ξ |

+

ˆ t

0

ˆ
Ω′r

( f1(uξ ,vξ ,wξ )− f1(u,v,w))µ sgn(û)dxdt ′
(36)

where C7 =
√

a∗C1T‖∆µ‖L2(Ω′r)
.

Analogously, by using (33) and (34) we can prove that
ˆ

Ω′r

|v̂(t)|µ dx≤
ˆ

Ω′r

|v̂(0)|µ dx+C8(r)|ξ |

+

ˆ t

0

ˆ
Ω′r

( f2(uξ ,vξ ,wξ )− f2(u,v,w))µ sgn(v̂)dxdt ′
(37)

and ˆ
Ω′r

|ŵ(t)|µ dx≤
ˆ

Ω′r

|ŵ(0)|µ dx+C9(r)|ξ |

+

ˆ t

0

ˆ
Ω′r

( f3(uξ ,vξ ,wξ )− f3(u,v,w))µ sgn(ŵ)dxdt ′
(38)

where C8 =
√

dC1T‖∆µ‖L2(Ω′r)
and C9 =

√
C2T‖∆µ‖L2(Ω′r)

.
To estimate the nonlinearities, we first remark that

f1(uξ ,vξ ,wξ )− f1(u,v,w) = û− ûū− (uξ vξ −uv)+ s(uξ wξ −uw)+
1
ε

v̂

− 1
ε
(φ(uξ + vξ )−φ(u+ v))

= û− ûū− 1
2

ūv̂− 1
2

ûv̄+
s
2

ūŵ+
s
2

ûw̄+
1
ε

v̂

− 1
ε
(φ(uξ + vξ )−φ(u+ v))

where we have used the notation φ(z) = p(z)z and a trivial expansion

ab− cd =
1
2
(a+ c)(b−d)+

1
2
(a− c)(b+d)

for any real numbers a,b,c and d. Similarly we derive

f2(uξ ,vξ ,wξ )− f2(u,v,w) = v̂− v̂v̄− 1
2

ūv̂− 1
2

ûv̄+
s
2

v̄ŵ+
s
2

v̂w̄− 1
ε

v̂

+
1
ε
(φ(uξ + vξ )−φ(u+ v)),

f3(uξ ,vξ ,wξ )− f3(u,v,w) = bŵ−bŵw̄− g
2

ūŵ− g
2

ûw̄− g
2

v̄ŵ− g
2

v̂w̄.

1We consider the problem with vanishing diffusion a→ 0.
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By applying the assumption of Lipschitz continuity of φ we obtain

J1 :=
ˆ t

0

ˆ
Ω′r

sgn(û)
(

f1(uξ ,vξ ,wξ )− f1(u,v,w)
)

µ dxdt ′

≤
ˆ t

0

ˆ
Ω′r

{
|û|− ū|û|− 1

2
sgn(û)ūv̂− 1

2
|û|v̄+ s

2
|û|w̄+

s
2

sgn(û)ūŵ

+
1
ε

sgn(û)v̂+
CLip

ε
|û+ v̂|

}
µ dxdt ′

≤
ˆ t

0

ˆ
Ω′r

{
|û|− 1

2
sgn(û)ūv̂− 1

2
|û|v̄+ s|û|+ sCε |ŵ|+

1
ε

sgn(û)v̂

+
CLip

ε
|û+ v̂|

}
µ dxdt ′,

since ū|û| ≥ 0, 0≤ w̄≤ 2 and 0≤ ū≤ 2Cε . Similarly,

J2 :=
ˆ t

0

ˆ
Ω′r

sgn(v̂)
(

f2(uξ ,vξ ,wξ )− f2(u,v,w)
)

µ dxdt ′

≤
ˆ t

0

ˆ
Ω′r

{
|v̂|− 1

2
sgn(v̂)v̄û− 1

2
|v̂|ū+ s|v̂|+ sCε |ŵ|−

1
ε
|v̂|

+
CLip

ε
|û+ v̂|

}
µ dxdt ′

and

J3 :=
ˆ t

0

ˆ
Ω′r

sgn(ŵ)
(

f3(uξ ,vξ ,wξ )− f3(u,v,w)
)

µ dxdt ′

=

ˆ t

0

ˆ
Ω′r

{
b|ŵ|−bw̄|ŵ|− g

2
sgn(ŵ)w̄û− g

2
|ŵ|ū− g

2
sgn(ŵ)w̄v̂

−g
2
|ŵ|v̄

}
µ dxdt ′

≤
ˆ t

0

ˆ
Ω′r

{b|ŵ|+g|û|+g|v̂|}µ dxdt ′.

Altogether,

J1 + J2 + J3 ≤
ˆ t

0

ˆ
Ω′r

{
|û|+ |v̂|+b|ŵ|− 1

2
ū(|v̂|+ sgn(û)v̂)− 1

2
v̄(|û|+ sgn(v̂)û)

−1
ε
(|v̂|− sgn(û)v̂)+(s+g)|û|+(s+g)|v̂|

+2
CLip

ε
(|û|+ |v̂|)+2sCε |ŵ|

}
µ dxdt ′

≤max
{

1+ s+g+2
CLip

ε
, b+2sCε

}ˆ t

0

ˆ
Ω′r

(|û|+ |v̂|+ |ŵ|)µ dxdt ′

19



since ū(|v̂|+ sgn(û)v̂) ≥ 0, v̄(|û|+ sgn(v̂)û) ≥ 0 and |v̂| − sgn(û)v̂ ≥ 0. Hence, we find a positive

constant Cε
10 = max

{
1+ s+g+2

CLip

ε
, b+2sCε

}
such that

J1 + J2 + J3 ≤Cε
10

ˆ t

0

ˆ
Ω′r

(|û|+ |v̂|+ |ŵ|)µ dxdt ′. (39)

By adding all the estimates (36)-(39) together we deduce thatˆ
Ω′r

(|û(t)|+ |v̂(t)|+ |ŵ(t)|)µ dx≤
ˆ

Ω′r

(|û(0)|+ |v̂(0)|+ |ŵ(0)|)µ dx

+(C7 +C8 +C9)|ξ |+Cε
10

ˆ t

0

ˆ
Ω′r

(|û|+ |v̂|+ |ŵ|)µ dxdt ′

for t > 0. The Gronwall inequality implies thatˆ
Ω′r

(|û(t)|+ |v̂(t)|+ |ŵ(t)|)µ dx≤
(ˆ

Ω′r

(|û(0)|+ |v̂(0)|+ |ŵ(0)|)µ dx

+(C7 +C8 +C9)|ξ |
)

eCε
10T .

Thanks to the uniform boundedness of the initial data in Ω′r, there exists a positive function ω such
that ω(ξ )→ 0 as ξ → 0 and

ˆ
Ω′r

(|û(0)|+ |v̂(0)|+ |ŵ(0)|)µ dx≤ ω(ξ )

for each x ∈ Ω′r and ξ ∈ RN such that |ξ | ≤ r. Thus, we deduce the existence of a function ρ(ξ )
satisfying ˆ T

0

ˆ
Ωr

|û|+ |v̂|+ |ŵ|dxdt ≤
ˆ T

0

ˆ
Ω′r

(|û|+ |v̂|+ |ŵ|)µ dxdt

≤C(ω(ξ )+ |ξ |)eCε
10T =: ρ(ξ )

and ρ(ξ )→ 0 for |ξ | → 0.

Corollary 3.8. The sequence {ua}a>0 is relatively compact in L2(QT ).

Proof. We deduce from (29) that the L2-differences of time translates of ua tend to zero as the trans-
lation parameter τ tends to zero. As for differences of space translates, we obtainˆ

Ωr

(ua(x+ξ , t)−ua(x, t))2 dx≤ 2sup
Ωr

|ua(x, t)|
ˆ

Ωr

|ua(x+ξ , t)−ua(x, t)|dx

≤ 2Cε

ˆ
Ωr

|ua(x+ξ , t)−ua(x, t)|dx

for any t ∈ (0,T ], where we have used the L∞-bound (16) for ua. Integration in time and the inequal-
ity (35) from Lemma 3.7 yield

ˆ T

0

ˆ
Ωr

(ua(x+ξ , t)−ua(x, t))2 dxdt ≤ 2Cερ(ξ ),
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where the right-hand-side tends to zero uniformly in a as ξ → 0. Moreover, similarly as in Corol-
lary 3.6, we deduce that

ˆ T

T−τ

ˆ
Ω

(ua(x, t))2 dxdt ≤C2
ε |Ω|τ and

ˆ T

0

ˆ
Ω\Ωr

(ua(x, t))2 dxdt ≤ 2C2
ε T |∂Ω|r.

The Fréchet-Kolmogorov Theorem 3.3 applied to {ua}a>0 allows us to conclude the relative com-
pactness of the sequence {ua}a>0 in L2(QT ).

Corollary 3.9. There exist a subsequence {(uan,van,wan)}an>0 and functions u,v,w ∈ L∞(QT ) such
that

(uan,van,wan)→ (u,v,w) strongly in [L2(QT )]
3 and a.e. in QT ,

(van,wan)⇀ (v,w) weakly in [L2(0,T ;H1(Ω))]2

as an→ 0.

Proof. The estimates (16), (26) and (27) together with Corollaries 3.6 and 3.8 and Remark 3.1 imply
the existence of a triple (u,v,w) ∈ [L∞(QT )]

3 satisfying (14) and such that (v,w) ∈ [L2(0,T ;H1(Ω))]2

and (vt ,wt) ∈ [L2(0,T ;(H1(Ω))′)]2, and a subsequence {(uan,van,wan)}an>0 such that

(uan ,van,wan)→ (u,v,w) in every Lp(QT ),

p ∈ [1,∞), as an→ 0.

Proof of Theorem 1.1. Repeatedly using the Lebesgue Dominated Convergence Theorem and Corol-
lary 3.9 allow us to pass to the limit a = an → 0 in the weak formulation (20), (21) and (22) to
obtain (11), (12) and (13). The regularity result that (v,w) ∈ [W 2,1

p (Ω× (δ ,T ))]2 for all δ ∈ (0,T )
follows from [7] (Lemma 3.4 on p. 206).

The uniqueness of the solution can be proved in a classical way by testing the equations for
U = u1− u2, V = v1− v2 and W = w1−w2 by U,V , and W , respectively, where (u1,v1,w1) and
(u2,v2,w2) are two solutions of Problem (P) such that 0 ≤ u1,u2,v1,v2 ≤ Cε and 0 ≤ w1,w2 ≤ 1.
The uniform bounds (14), Lipschitz continuity of φ(z) = p(z)z and the Young inequality allow us to
find a positive constant C(ε) such that

d
dt

ˆ
Ω

(U2 +V 2 +W 2)≤C(ε)

ˆ
Ω

(U2 +V 2 +W 2). (40)

Indeed, from the equation for U we obtain

1
2

d
dt

ˆ
Ω

U2 =

ˆ
Ω

{
U2− (u1 +u2)U2− v1U2−u2UV + sw1U2 + su2UW

− 1
ε
(φ(u1 + v1)−φ(u2 + v2))U +

1
ε

UV
}
,

i.e.,
1
2

d
dt

ˆ
Ω

U2 ≤
ˆ

Ω

(1+ s)U2 +Cε

ˆ
Ω

|UV |+ sCε

ˆ
Ω

|UW |

+
CLip

ε

ˆ
Ω

|(U +V )U |+ 1
ε

ˆ
Ω

|UV |.
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The Young inequality then gives the first part of (40), namely,

d
dt

ˆ
Ω

U2 ≤C(ε)

ˆ
Ω

(U2 +V 2 +W 2).

Analogously we obtain the estimates for V and W . The uniqueness then follows form the Gronwall
inequality applied to (40).

4 Concluding remarks
In this paper we have proposed a reaction-diffusion/ODE model describing the interaction of farmers
and hunter-gatherers in the Neolithic transition in Europe and addressed the fundamental question
of existence and uniqueness of the solution of the system. This model is a combination of a Lotka-
Volterra structure between the farmers and hunter-gatherers and the superimposed interaction between
sedentary and migrating farmers. A key feature of this model is that the sedentary and migrating
farmers convert to each other depending on the total density of farmers. Intuitively speaking, if
the total density of farmers is relatively large, the sedentary farmers tend to actively convert to the
migrating ones because of overcrowding, while if the total density of farmers is relatively small, the
situation is reversed. As explained in the assumption (A2), this mechanism reminds the so-called
population pressure effect in the farming population.

By passing to the limit in (5) as ε → 0, we formally obtain

p(F)F1 = (1− p(F))F2,

that is,
F2 = p(F)F (41)

where F = F1 +F2. On the other hand, adding the first two equations in (5) together gives

Ft = ∆F2 +(1−F)F + sFH,

Ht = ∆H +b(1−H)H−gFH.
(42)

Therefore, in the limit ε → 0, by substituting (41) in (42) we obtain

Ft = ∆(p(F)F)+(1−F)F + sFH,

Ht = ∆H +b(1−H)H−gFH.
(43)

The first equation in (43) can be rewritten as

Ft = div(D(F)∇F)+(1−F)F + sFH, (44)

where D(F) = p′(F)F + p(F). Since D(F) = 0 whenever F = 0, then the equation (44) is a degener-
ate, nonlinear diffusion equation. The diffusion D(F) for p(F) = pm(F ;Fc) with m = 2 and Fc = 1,
where pm(F ;Fc) is defined by (4), is shown in Fig. 5. The difference between the standard reaction-
diffusion (F,H)-system with linear diffusion stated in (1) and the model (43) is obvious. Of course,
if p is a constant function, then (43) coincides with (1).

The main purpose of this paper was to give a comprehensive introduction into modelling the Ne-
olithic transition from hunting-gathering to farming by using fundamental mathematical framework.
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Figure 5: Functional form of D(F) = p′(F)F + p(F) in (44) for p(F) = pm(F ;Fc) defined by (4) with
m = 2 and Fc = 1.

We do not pursue the study of the large time behaviour of the solution of (5)-(7) as well as the rigor-
ous derivation of (44) from (5) as ε → 0 in the present paper. These will be reported in forthcoming
works.

Finally, we remark that the proposed model with a possibly modified interspecies dynamics can
be applied to a variety of other biological and socio-economical migrations. For example, one can
imagine a population of a predator (e.g., wolves) that follow the same “migration rules” as imposed
by the assumptions (A1)-(A3). In particular, a predator occupying a territory with the sufficient food
resources for its survival, stays in that territory. On the other hand, if the population of the predator
grows to a certain size in this territory, some individuals leave the place and search actively for another
uninhabited place or a place with low density of the predator. A prey can migrate freely and randomly.
Another example may include a population that migrates into regions occupied by former residents.
The migrants may decide to stay in a region or move according to the total population of migrants
since, for example, a high density of migrants may mean less work possibilities for them. On the other
hand, migrants can also decide to stay or move according to a “local rule”, e.g., language spoken, so
in that case they would prefer to move from a place with low to high density of people speaking the
same language. In this scenario, a decreasing function p in the model (5) has to be assumed. Of
course, no intense conversion of the former residents into migrants should be expected even though
it cannot be completely excluded and the diffusion of the former residents should be small or even
neglected from the modelling.
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