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Abstract

A reaction-diffusion-ODE model for the Neolithic spread of farmers in Europe has been re-
cently proposed in [[7]. In this model, farmers are assumed to be divided into two subpopulations
according to a mobility rule, namely, into sedentary and migrating farming populations. The
conversion between the farming subpopulations depends on the total density of farmers and it is
superimposed on the classical Lotka-Volterra competition model, so that it is described by a three-
component reaction-diffusion-ODE system. In this article we consider a singular limit problem
when the conversion rate tends to infinity and prove under appropriate conditions that solutions
of the three component system converge to solutions of a two-component system with a linear
diffusion and nonlinear degenerate diffusion.

Keywords: reaction-diffusion system; Lotka-Volterra; singular limit problem; nonlinear degener-
ate diffusion

1 Introduction

Since the pioneering works by Fisher [9] and Kolmogorov-Petrovsky-Piskunov [10], reaction-diffusion
equations are widely used for modelling propagation phenomena in the field of mathematical biology,

specifically, population dynamics and population genetics. Besides the Fisher-KPP equation we can

find many interesting model equations related to the propagation phenomena (see [13l]). The recent

works [6] and [7] treat new models for the propagation of the neolithic transition and numerically

exhibit interesting transient spatial patterns in addition to mathematical studies.



In this article we deal with a model for the Neolithic transition which was developed in [/]. The
spread of farmers into regions occupied by hunter-gatherers began during the neolithic transition pe-
riod. Archeological evidence indicates that the expanding velocity of farmers is roughly constant
all over Europe. In order to make this phenomenon clear, several population models have been pro-
posed. One of the basic macroscopic models is a demic diffusion model described by the Fisher-KPP
equation. As for a cultural diffusion model describing the expansion of farmers into the regions occu-
pied by hunter-gatherers, Ammerman and Cavalli-Sforza ([[1]) proposed a two component reaction-
diffusion system for farmers and hunter-gatherers, which is a natural extension of the Fisher-KPP
equation. In addition, there is a demic-cultural diffusion model, which is a mix of the two models
above. It has the form of a three component system for the original farmer population, the migrating
farmers and the hunter-gatherers ([2]). In those models it is assumed that the dispersal of farmers is
random movement. However, one observes that the farmer populations are basically sedentary and
that if the density becomes higher, they are forced to disperse. This indicates that the dispersal of
farmers is not purely random.

Here we make the following assumptions:

(A1) farmers are basically sedentary,

(A2) if the density of sedentary farmers becomes higher, some of them become migratory and dis-
perse randomly because of the population pressure,

(A3) if the environmental conditions become better for farmers, the migratory farmers stay in their
region.

We note that the sedentary and the migratory farmers are not different from a genetic point of view.
They change their movement according to the environmental conditions. This leads us to introduce
two types of farmers, namely, the sedentary farmers and the migratory ones which convert into each
other with some probability.

We make use of a reaction-diffusion-ODE model, proposed in [/]], describing the spatio-temporal
evolution of sedentary and migratory farmers and hunter—gatherers in the Neolithic transition. From
the point of view of ecology, the model stems from the fact that a lifestyle of agriculture and settlement
can support a much larger population density than hunting and gathering. Therefore, it is assumed in
our modelling framework that farmers preferentially lived a sedentary lifestyle which could convert
to a migratory one if the population of farmers grows over some critical densities. To the best of our
knowledge, this assumption was not considered elsewhere except for [7] and [6].

We first introduce the model of sedentary and migrating farmers. Let F; and F> be the densities
of sedentary and migrating farmers. The spatial and temporal evolution of farmers is modelled by the
following system of equations

Fo=n (1T ) R (PO - (1= PF)R),
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where Fj, = oF . In , r1 and ry are the intrinsic growth rates of F and F>, Kr, and K, are the
carrying capacities of F; and F, dp, is the rate of random dispersion of the migrating population of
farmers F, and F = F; + F,. The conversion between F| and F, is given by a probability density



function P, which depends on the total population of farmers F, P = P(F), and where P(F)F is the
conversion rate from Fj to F, and (1 — P(F))F; is the conversion rate from F, to Fj. The probability

P satisfies
(1) P(0) =0,

(i) P'(F)>0 for F >0,
(iif) lim P(F) = 1.
F—o0
As a specific example, we may consider

F
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where F, is a positive constant such that P(F.) = 1/2. The conversion mechanism can be best seen
by considering the “extreme” situations, namely, when F > F, and F < F,. In the first case when
F >> F,, the probability P(F) is high, say P(F) = 1, and we have that P(F)F, — (1 — P(F))F> ~ F.
This term in implies that the sedentary farmers F; convert actively to the migrating farmers F;.
In the case when F < F, we have P(F) ~ 0 and so P(F)F; — (1 — P(F))F, ~ —F;. This term in (1]
implies that the migrating farmers F> convert to the sedentary farmers Fj. The extent of conversion is
given by the constant 1 /€.

By taking the population of hunter-gatherers into account, we can extend the system (1)) to the full
farmer—hunter system
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where dy, ry and Ky are, respectively, the rate of dispersion, the intrinsic growth rate and the carrying
capacity of H, and e, and ep, are the conversion rates from H to F| and F,. All parameters in (2) are
positive constants.

Since the timescale of the conversion between F; and F; is fast, compared with the growth of F}
and F;, and the conversion from H to F; and F;, we assume that € is a small parameter in contrast to the
other parameters in (2)). Moreover, the sedentary and migrating farmers F; and F; are not genetically
distinguished in the total population of farmers F' = Fj 4+ F,. Hence, it leads us to the natural question
whether the system (2)) for (Fj,F>,H) can be reduced to a system for (F,H). In fact, adding the
equations of F; and F>, we obtain an equation for F. However, it is not a closed system for (F,H).
Taking € — 0, we formally obtain the relation P(F)F — F; = 0 in the limit. Then the system becomes
a closed system. We note that the limit system is no longer a simple reaction-diffusion system for
(F,H) but a degenerate, nonlinear diffusion system which includes the conversion rate P(F) in the
diffusion term. This kind of limiting procedure is called a fast reaction limit and has been extensively
used in literature ([S], [8], [12] et al.) in order to prove the validity of the formal procedure. However,
by the conditions for P, which are natural in our model, the previous results are not applicable to our
case (see [12]). The purpose of this paper is to apply a fast reaction limit method and prove that the
limit system approximates the original system in a suitable way.



The organisation of this paper is as follows. In Section 2 we state the main theorems in addition
to the notations and definitions. In Section 3 we introduce the Fréchet-Kolmogorov compactness
theorem, which plays a key role to obtain the main results. In Section 4 we provide a priori L™-
estimates which are uniform in € and g. While we apply maximum principle arguments to find an
upper bound for the function F;, we estimate L”-norms of F, to finally obtain a L”-bound. In Section
5 we use the a priori estimates to prove the relative compactness of sequences of solutions. Finally,
in Section 6 we complete the proof of the main theorems.

2 Preliminaries and main results
We assume
K := K, = Kp,, ef =ep = ep, ri=ry=rn,
and set
a:=esKy/r, b:=esK/r, e =er, d:=dp/dy, v =ru/r.
After making the transformations in (2)) as
X =\/rldy, t:=r, u=FR/K, v:=FR/K, w:=H/Ky,

and dropping the primes, we obtain a system of equations for
( 1
= (1—u—v)u+auw— S (p(u+v)—v) inQr,
1
vi=dAv+ (1 —u—v)v+avw+ P (p(u+v)—v) inQr,

w,=Aw+r(1—w)w—>b(u+v)w in Qr,
dyv=dyw=0 onlrp,
L(”(',O),V(',O),W(',O)) = (MOaVO,WO) )CEQ,

where we put @(s) := sP(Ks). We suppose that Q is an open, bounded domain in RY with a suf-
ficiently smooth boundary (e.g., 9Q € C?), Qr = Q x (0,T) and I'r = dQ x (0,T) for an arbitrary
T > 0. The coefficients a,b,c,d,r and € are positive constants. By W! (Q) we denote the space of
all functions f such that f,Vf,Af € L'(Q).

We assume

9 €C*(Ry), ¢(0)=¢'(0)=0,
(Hp) 0<o(s)<s@'(s) and 0< ¢'(s) <1 for s>0, li_>m (s—o(s))=C,
¢"(s) >0 for s €[0,2(1 +a)),
for a positive number C. We remark that the last assumption is necessary for the proof of the existence

of a unique solution of Problem (&?) which will be given below.
The next lemma shows that the probability density P(s) follows from ¢(s) satisfying (Hy).



Lemma 2.1. Under the assumptions of (Hy) the probability density P(s) := ¢(s/K)/(s/K) (s > 0)
satisfies

(i) limy_,oP(s) =0,
(ii) P'(s) >0 for s >0,
(iii) im0 P(s) = 1.

Proof. The assertion of (i) immediately follows from the definition of P(s) and ¢’(0) = 0. We com-
pute

p(s) = PO Kols/K) _ K[(s/K)o'(s/K) —9(s/K)]

s 52 52

Finally the assumptions of (Hy) imply that s — ¢(s) is monotone increasing and s — ¢(s) < C, so

s—C<o(s) <s. 3)
. JK—C/K _ p(s/K)
s/K—C/K @(s/K)
/K < S/K =P(s) < 1,
which yields limg_,.. P(s) = 1. O

Lemma 2.2. With P(s) :=s/(s+ F.), the function ¢(s) := sP(Ks) satisfies (Hy) for C = F. /K.

Proof. We first write

o S2 S2 C
P(s) = =——=s(1-—=).
s+F./K s+C s+C

¢ €C(Ry), ¢(0)=¢'(0)=0

Then we easily see

hold. On the other hand

y s(s+C) o2
0<@(s)= —=1-— for >0,
PO =Gger T Gror *
and
5'(s) — € ok 0
SQ(s)—0Q(s) = =5 > or s>
76 00)= e
Finally, 3 5
: . sC wo o 2C2
lim (s so(s))—slggﬁé—c and @"(s) = s
which completes the proof. 0

By the monotonicity of ¢ we can define the inverse ¢! on [0, ) and it follows from (3] that
s<@ '(s)<s+C fors>0. 4)

Indeed, the second inequality in (3] yields the first inequality in (@) and the first inequality in (3) is
equivalent to s < @(s +C) for all s > —C which leads to the second inequality in . Moreover,

5



we define a(s) := s — @(s) and assume C > 1 +a. Then 0 < o/(s) < 1 for s > 0 and « is a strictly
increasing function on R with values in [0,C). The inverse function o~ ! is strictly increasing on
[0,C), and so on [0,1+a]. As a consequence of the monotonicity of a~! on [0,C) and in view of
(Hp), we have

~1
o (1
SSOFI(S)SCQS for0<s<1+a, CZ:ZM, 5)
1+a
where the second inequality follows from the convexity of the graph of a~! in [0,1 + ], indeed
a"(s) =—¢"(s) <0in 0 < s < 1+a. These two inverse functions play important roles in the proof

of the main result. B
Next, we assume that the initial functions ug, vo, wo € W>!(Q) NC(Q) satisfy
(Ho) (i) up>0, v9>0, 0<up+vy<l4+a and 0<wy<1 in Q,
(H())(ii) (p(uo+v0) =y In Q.

We are now in a position to state our main theorem on the singular limit of Problem (%) as €
converges to 0.

Theorem 2.3. Assume (Hy) and C>1+4a Let T >0. Let {uf}e~0, {Vv¢}eso and {w€}e=o be
solutions to (P¢) satisfying (Ho)(i) — (ii) and let p € [1,00) be arbitrary. Then there exist subse-

quences {u%}e 0, {V%*}e >0 and {w}e ~o of the sequences {u}eo, {v®}eso and {wt}e~o, func-
tions u € L*(Qr), v € L*(Qr) and w € L*(Qr) such that

ut —u, v —v, w& —w strongly in L’ (Qr) and a.e. in Qr (6)
as & — O.

Let us denote
Fe=y%*4+v&% and z=u+v,

where u and v are the limit functions in Theorem[2.3] We deduce from Theorem2.3|that for p € [1,0)

7% —ze L”(Qr) strongly in L?(Qr) and a.e. in Qr (7

as & — 0. Then we can assert that (z,w) is the unique weak solution of Problem

z =dA@(z)+ (1 —z)z+azw in Qr,
wy=Aw+r(1—w)w—bzw inQr,
ovo(z) =dyw=0 onIrp,
(z(-,0),w(-,0)) = (z0,w0), x€ L,

(&)

where zg = ug + vg is such that 0 < zg < 1+ a. Following [3], we define a weak solution of Problem
(P) as z,w € C([0,T;L"(Q))NL”(Qr) and
- [ 2EO = [ (@p@)ag (12 am)E +25) dxar, ®)
Q Oor

- /Q W& (0) dx = //Q 0AE (1 - )€ ) dds ©)



hold for all test functions & € C>!(Qy) such that & (x,T) = 0 in Q and & = 0 on dQ x [0, T].

We remark that the existence and uniqueness of the weak solution of Problem (£?) can be estab-
lished by modifying the arguments in [3] and [6]. In fact, the well-posedness of Problem () and
the uniqueness for a weak solution z,w € C(Qr) as well as the large time behaviour of solutions
of Problem () has been studied in [6]. In particular, it is proved in [6] that any solution (z,w) of
Problem (&?) satisfies

0<z<1l+4+a and 0<w<l1 (10)

in Q x [0,%0). Moreover, the solution orbits converge to a steady state uniformly in C(Q)? as t — oo
and, depending on the coefficient b, the convergence has either exponential rate if b # 1 or algebraic
rate if b = 1 in the L? topology for each p € [1, ).
We remark that the limit functions u and v are given by v = ¢(z) and u = z — ¢(z) and that the
equation for z is parabolic degenerate since ¢’(0) = 0 while the equation for w is uniformly parabolic.
In the sequel we obtain the next theorem.

Theorem 2.4. Assume the same assumptions as in Theorem The pair of functions (z,w) =
(u—+v,w) given by the limit functions (u,v,w) in Theoremcoincides with the unique weak solution

of Problem (&) with zo = ug +vo € C(Q) and wg € C(Q).

As in [7]], we consider the regularised problem

( 1
U :,uAu—}—(l—u—v)u—}—auw—g((p(u—i—v)—v) in Qr,

1
(o) v,:dAv+(1—u—v)v—l—avw—kg(q)(u—f—v)—v) in Or,
o wi=Aw~+r(1—w)w—>b(u+v)w inQr,

oyu=dyv=yw=0 only,
g(u(UO)?V('vO)’W('vO)) = (I/t(),V(),W()) DS -Q',

where 0 < u < M for some positive constant M. Problem (P 1) admits a unique nonnegative clas-
sical solution (uy, vy, wy) € [C21(Q x (0,T]) NC(Q x [0,T])]>. Moreover, it holds that

IJ Y
0<up,v; and 0<wy<I (11)
in QT'
It is proved in [7] that the solution (uy, vy, wy;) of Problem (% ;) converges to the unique solu-

tion (u®,v%,w?) of Problem (&) as u — 0 for € > 0, where

u® € C¥([0,T];L7(Q)),

Ve we € L7(0,T;L%(Q)) N L*(0,T; H'(Q)), v, wf € L*(0,T; (H'(Q))"), 2

and
— /Quoé(O)dx = //QT (((1 —uf —V)uf +autw® — % (o(uf +1%) —VS)) g —I—u8§t> dxdr,  (13)
—~ /Qvog(O)dx: //QT <dv€ AE + <(1 —uf — VN + % (@(u+v%) — v£)> 3 +v£§z) dxdr,
(14)
- [ mE0)dr= //Q 9 AE (1w = b ) € ) s (1s)

7



for & € C*!(Qy) such that & (x,T) = 0in Q and d,& = 0 on dQ x [0,T].
In a similar way we can obtain the singular limit of Problem (% ;) as € — 0 for u > 0, namely
Problem (Z),

% = UA(z—@(2)) +dA@(z) + (1 —2)z+azw in QOr,
wy =Aw+r(l—w)w—bzw in Qr,
dp(z)=dyw=0 onlr,

(z(-,0),w(-,0)) = (z0,w0), x€Q,

(Pu)

where zo = uo + vo. One could also prove that the singular limit of Problem (Z7,,) as u — 0 is given
by Problem (&?). Consequently, we can complete the graph on Figure

£—0

(Z) (Z)

u—0,e>0 u—0

(Few) =z (W)

Figure 1: Schematic representation of the singular limit problems: A regularised problem (% ) is
obtained from Problem (%) by adding a diffusion term into the equation for u. The singular limit of
Problem (3287”) as 4 — 0 for € > 0 is shown in [7]. While the a priori estimates depend on € in [7]],
the uniform estimates in € and pt, which we obtain in this paper, allow us to prove that the singular
limit of Problem (&) as € — 0 is given by Problem (.4?). Similarly, we can show the singular limit
of Problem (¢ ;) as € — 0 for u > 0 and the singular limit of Problem (7)) as u — 0.

We therefore treat the regularised problem (% ;) and prove some uniform estimates in €, 1 and
p > 2 in the later sections.

3 Compactness theorem

The main tool that is used in this present paper is the following Fréchet-Kolmogorov compactness
theorem, see [4], Theorem 4.26 on p. 111; the form below is taken from [5], Proposition 2.5.

Theorem 3.1 (Fréchet-Kolmogorov). Let % be a bounded subset of L (Qr) with p € [1,0). Assume
that

i) for any n > 0 and any subset ® € Qr, there exists 6 > 0 (0 < dist(®,dQr)) such that
Hf(x_l_(g,at) _f(x7t)HLp(a)) + Hf(xat_FT) _f(xvt)HLP((D) <7

forall §,7 and f € F satisfying |E|+ || < 8.



ii) for any n > 0, there exists a subset ® € Qr such that

1fllzror\@) <M
forall f e 7.
Then F is relatively compact in LP (Qr).

To apply the Fréchet-Kolmogorov theorem, we consider two subsets of Q, namely Q, = {x €
Q|B(x,2r) C Q} and Q] = U,cq,B(x,r), where B(x,r) denotes the ball in R with centre x and
radius r. We have Q, C Q] C Q. Moreover, we define a smooth function y € C7’(€].) such that

=1in Q,, 0<y<1in Q, w=0 in Q\Q. (16)
v ¥ g r

We refer to [|8] for the precise construction of y. Let the sign function be defined by

1 if s >0,
sgn(s)=< 0 if s=0,
—1 if s <O0.

By sgn, we denote a smooth nondecreasing approximation of the sign function such that sgn,, (s) €
[—1,1] for s € R and sgn,, converges pointwise to sgn as ) — 0. For example, sgn,, (s) =s/+/ 52+ 12

4 Uniform L”-estimates

In this section we show that the solution (uj;, vi;,wy;) of (P ) is such that uj; and vj; are bounded in
L>(Qr) uniformly in € and u. First we use a comparison principle to show the uniform boundedness
of uf.

u

Lemma 4.1. Ir holds that
0<uf <C (17)

in Q x [0,00), where C is given by (Hy) and satisfies C > 1+ a.
Proof. Let us define
1
Lu(s) = sy — uAs — (1 —s— vy )s —aswy, + E(go(s+ Vi) —vi)-

We deduce from (H), namely from the lower bound ¢(s) > s — C and (11) that

Z,(C) :C’vﬁ — (I +awy —O)C+ (@(C‘+vﬁ) —vp)
>—(1+a—-C)C+

=(C—(1+a))C.

(C+v —C’—vz)

=t M| —

1
€

Since C > 1 +a we see that .Z,(C) > 0. Hence, in view of the hypothesis (H) ,namely, 0 <up < 1+a,
it follows from the standard comparison principle that uy, < C for all (x,7) € Q X [0,0). O

9



For later use we define C, = max , ;g [0 .0) uy (x,t). Then, it follows from 1| that
0<up<C,<C (18)

in Q x [0, ).
However, we cannot obtain a similar upper bound for the function va. Nevertheless, we can still
obtain a uniform L™ estimate for vﬁ, which we do in Corollary First we prove some auxiliary

lemmas. We remark that in view of (Hy), ct(s) = 1 — @(s) is strictly increasing from zero to C and
a~! is well defined on the interval [0,C). Moreover, &~ (0) = ¢~ (0) = 0.

Lemmad.2. LetpeN, p>2,andZ=U+V, where 0 <U < C andV > 0. Then,
(9(2)=V) (' W) = (7" (V) 1) > 0. (19)

Proof. Since ¢(Z) —V =U — a(Z), we have that

(9(2)=V) (e (U) =(p~'(V))' )
=(@@2)-V) (e« O) =2 ) +(p(2) V) (Z" = (97 (V)" )
U —a(2) (e ) =2 ) +(e(2) - V) (2" = (9~ (V))' 7))
1 ) 1

>0

where the last inequality follows from the monotonicity of functions o, ¢ and s+ sP~! forp > 1. [

Next for p € [2,00) we set

Dy (r) :/Or(a_l(s))p_lds and Dy (r) :/Or((p_l(s))p_lds. (20)

Since &~ ! and ¢! are nonnegative functions, it holds that @ (r) > 0 and ®(r) > 0 for each r from

the corresponding domains of definition.

Lemma 4.3. Suppose that (Hy) and (Hy) are satisfied. Let p € N, p > 2. Then, fort >0

1
L@w(vi(x,t))dxz ];/Q(vi(x,t))pdx, (21)

and there exists a constant C3 = C3(p) such that
/Q (®e(t0) + Py (v0)) dx < C. (22)
Proof. 1t follows from the lower bound in , namely, ¢! (s) > s for s > 0, that

/Q%(vi)dx:/Q/OVﬁ«p1<s))”1dsdxz/g/ovf‘sp1dsdx=1%/§2<vﬁ>”dx,

10



which completes the proof of (21I). Next we prove (22). It follows from the upper bound in (),
namely, (p_l(s) < s+ C for s > 0, that

/<I>q)v0dx // I P‘dsdx<// (s+C)P~'dsdx

:/Qp((ww) ey (0T p*c) 2

where we used the uniform bound 0 < vy < 1+ a from (Hp). Similarly, it follows from the upper
bound in H namely, a~!(s) < Cas for 0 < s < 1 +a, and the inequality 0 < ug < 1 +a from (Hp)

that
/dDauodx // a l( pldsdx<// (Cy5)P~Ldsdx
|Q|

P CP 1(1_|_a

= L <
Qp p
Thus, setting
- _ Q
G =(((1+a)+OP+C5 ' (1+a)) |]7|, (23)
we obtain (22)). [

Lemma 4.4. Suppose that (Hy) and (Hy)(i) are satisfied, and let p € N, p > 2. Then, there exists a
constant C4 = C4(p) such that fort >0

// )P 1—|—v (¢~ l(vﬁ))Pl)dxds§C4t+p/ /q)(p(vfl)dxds. (24)
0 JQ

Proof. Tt follows from the uniform bound that Cy = max, g [0.00) up (x,1) < C. Since ™! is
nondecreasing then

// )P~ ldxds < G, (a™1(C))PQlt = Cyt, (25)
where
Cs =Cu(a1(C))P 9. (26)
Next, we prove for r > 0 that
1 r
e () < /0 (¢~ (s))7 " ds. @7)

To this end we define

o(r) = /Or(fpl(s))pldS— I—}r(‘[fl(r))pf1

and show that Q(r) > 0 for r > 0. We have that Q(0) = 0 and

=2 Lo 2 (07 ) —r (o) (7).



Next we check that for all » > 0 .
r((p_l) (r) < (p_l(r). (28)

Let r = @(s). Then, s = ¢! (r), ((pfl)/ (r)=1/¢’(s) and 1| is equivalent to

/

s@'(s)
o)

which, in view of (Hy), is true for each s > 0. Thus, since p > 2 and @~ (r) > 0 for r > 0 we deduce
that Q'(r) > 0 for r > 0. This with Q(0) = 0 implies that Q(r) > 0 for r > 0, which yields (27). In

view of (20) we rewrite as
(@~ ()" < p®y(r) (29)

forall r > 0. We set r = vﬁ and integrate 1D on space and time to obtain that

// pldxds<p//tl>(p )dxds,

which together with (25) completes the proof of (24). O

Corollary 4.5. Suppose that (Hy) and (Ho)(i) are satisfied. Then, there exists a constant C, =
Cy(T) > 0 independent of € and U such that

0<Vv8 <C, (30)

£
u
in Qx [0,T].

Proof. We remark that for all smooth enough functions f = f(¢), there holds

Coaln =@ ()L ama Sag(r)= (o7 (1)L,

where the functions ®, and ®, are defined in . Multiplying the equations for uﬁ and vﬁ in
Problem () by (™! (uﬁ))”_l and (¢! (v;i))p_l for p € [2,0), respectively, adding the results
and integrating in space and time yield for # > 0

[ @atig0)+@qiast - 1u [ [ (@6 e 6]V axas
o=d [ [ (07 05207 057 asas
[ (ot —s) (@6 (o7 ) axas an
< [ (@atun) +@p0o)ar+ (14a) [ [ (@ ) 4ok 07 05 asas,

We used the integration by parts formula, the non-negativity of a~!(u ”) and

eE _ € E
where Zy=uy+v nd

0
¢! (vﬁ), and the estimate stating that wﬁ <1 to get (31). Since p > 2 and the functions o
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and ¢! are nonnegative and nondecreasing, the second and third integrals in (31 are nonnegative.
In view of lb and the fact that (I>a(uﬁ) > (0 we deduce from ll that

/Q Dy (vE (1)) dx < / (Do (0) + Py (v0)) dx

Q
—I—(1+a)/0 /gz(uﬁ(a_l(uz))p_l+vﬁ(¢_1(vﬁ))p_l)dxds.

Next, it follows from and that

t
/%(VZ(I))dx < C3+(1+a)C4t+(1+a)p/ / Dy (vE) dxds. (32)
o) 0.JQ
Gronwall’s inequality (see Lemma 4.1.2 on p. 169 in [11]) implies for # > O that
C
/Q%(VZ (1)) dx < (C3 + ?4) ePtiral, (33)

where C3 and Cy are defined by and (26), respectively. In view of we finally deduce that
1

;/Q(vfl(t))pdx < ‘% (((1 +a)+é)p+C§_](l +a)1’+cu(a—1(cu))p—l> oPU+a)

Thus, for each z € [0, T]

~ _ 1/
”vfl('?t)HLp(Q) < ‘Q‘l/p (((1+a)+C)p—i—C§ l(l—i—a)p—i—Cu(a*l(Cu))P*l) ‘De(1+a)t

s o\
<max{Lj@f)e 7 (Y 5

i=1

where oy = (1+a)+C, Bi =1, 0 =Co(1 +a), Bo=Cp, a3 = o~ (C,) and B3 = a1 (C,)/C,. The
constants ¢; and f; for i = 1,2,3 are nonnegative. Thus, we deduce that for each p > 2

IS gy < max{1. e man 1, 2 Y
J

for some j € {1,2,3}. Hence, the L”-norm of vy, (-,#) is bounded uniformly in p for each p € [2,0)

and 7 € [0,T]. Consequently, see Theorems 3.10.7 and 3.10.8. on p. 81 in [14ﬂ vy (1) € L™(Q) for
t € [0,T]. Because of the regularity of v; we conclude the proof of (30). O

By repeating the proof of Corollary [4.5|for p =2 we get important estimates of the gradients of
ut and v .
p u

Corollary 4.6. Suppose that (Hy) and (Hy)(i) are satisfied. Then, there exists a constant Cs indepen-
dent of € and | such that

T
u/o /leuﬁ}zdxdtscs, (34)

T
d/ /\sz|2dxdtgcs. (35)
0 JQ

Theorems 3.10.7 and 3.10.8. in [14]: Let |Q| < o. Let 1 < p; < pr < ... and suppose that limy_,. py = o. Let
£ €M1 LP4(Q) and @ = supyey | < <. Then £ € L=(Q) and |[£] (= limpel| e
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Proof. Since @a(uﬁ) > 0 and @, (vﬁ) > 0 for uﬁ > (0 and vﬁ > 0, respectively, it follows from |i
for p =2 and the estimates (19) and (22)) that

T T
_ 2 _ 2
“/o /Q(a NCANCA dxdt+d/0 /Q<"’ 1y (4898 [ dedr
T
§C3+(1+a)/ /(uﬁa_](ui)-l—vﬁq)_l(vﬁ))dxdt.
0 Q

Since a~! and ¢! are nondecreasing functions, then in view of (18) and (30) we obtain

T T
u/ /(a—l)’(uﬁ)\vumzdxdzw/ /(<p—1)’(v§)|wﬁ|2dxdzgc5, (36)
0 Jo 0 Ja
where Cs = C3+ (1 +a)(C,a 1 (Cy) + Coo~1(C,))|Q|T. Moreover, it follows from (Hy) that
_ 1
(@) () =y > 1 (37)

o' (=" (vi))
It follows also from (Hy) that a/(s) = 1 — ¢’(s) < 1 for s > 0. Thus,

1
—1\// €
= >1. 38
((X ) (u[.l,) a/(a_](u'ﬁ)) > ( )
We deduce (34) and (33)) from (36)—(38). O

Finally, we present a similar estimate for wﬁ.

Lemma 4.7. There exists a constant Cg independent of € and | such that

T
//]Vwﬁ]zdxdtgc6. (39)
0o Ja

Proof. Multiplying the equation for w; by wy; and integrating in space yield

1d 2
3 Q(Wﬁ)zdx—l—/g}Vwm +b/g(ufl+vfl)(w2)2:r/g(l—wz)(wﬁ)zgr\m,

where we used the integration by parts formula and the uniform estimate (I1). Integrating this in-
equality in time, (11) and 0 < wo < 1 in Q implies the estimate with Cg = (rT +1/2)|Q]. O
5 Relative compactness

In this section we always assume that (Hy) and (Ho)(i) — (ii) are satisfied. The system of equation
(P ) can be written in the form

1
uy = HAu+ fi(u,v,w) — EF(M’V)’

1
(325:/4) Vs :dAV+f2(”aVaW)+EF(M’V)’
Wy :AW+f3(u7V7W)7
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where we denote f(u,v,w) = (1 —u—v)u+auw, fo(u,v,w) = (1 —u—v)v+aww, f3(u,v,w) =r(l—
w)w —b(u+v)w and F(u,v) = @(u+v) —v. We recall that u < M. In view of (Hp) we have

F,(u,v) =0 (u+v) >0 and Fy(u,v) = @' (u+v)—1<0,

in other words F (u,v) is increasing in u and decreasing in v. From the monotonicity of F we deduce
the following estimate.

Lemma 5.1. Let u,u,v,v € R. Then

(F (u,v) = F(,))(sgn(u —u) — sgn(v —v)) > 0. (40)

Proof. Since sgn(u—u) = sgn(v—v) foru >uandv >v,u <uandv <vand u=uand v=v, the
inequality is trivially satisfied. Let u > w and v <v. Then sgn(u —u) — sgn(v—v) > 1 and

F(u,v)—F(u,v) = (F(u,v) — F(u,v)) + (F (u,v) — F (4,v)) > 0,

since both terms in the brackets are nonnegative due to the monotonicity of F. The remaining case
u < u and v > v can be proved analogously. O

Next we prove two auxiliary lemmas.
Lemma 5.2. There exists a constant Cy such that
3 3
Z fiur,up,us) — fi(iy i, u3)) sgn(u; — ;) < C7 Yy |u; — ;] (41)
= i=1

for any two triples (uy,uz,u3) and (uy,u,us) such that 0 < uy,u; < Cy, 0 < up,up < C, and 0 <
uz,uz < 1.

Proof. The estimate (41]) follows from the fact that the functions f;, i = 1,...,3 are Lipschitz contin-
uous on the domain [0,C,] x [0,C,] x [0, 1]. O

Lemma 5.3. There exists a constant Cg such that for every t € (0,T)
/ (Jug, (-, T) —uo| + iy (-, ) = vo| + |[wE (-, T) —wo|) dx < Gyt (42)
Q

where Cg is independent of T,€ and |L.

Proof. We multiply the equation for u by sgn, ( —ug), where sgn,, is a smooth nondecreasing
approximation of the sign function as already dlscussed above, and integrate in space over Q to
obtain that

d(ué —u 1
/Q—( ”at o) sgn, (u, — uo) dx — u/ i — uo) sgny (uy —MO)derg/QF(”fuvft)sgnn(”z_”0)dx

= [ Augsgny(uy —uo)dx—f—/Qfl (v, wiy ) sgng (g, — o) dx

15



where we used d;uf, = d;(uf, — ug). Similarly we multiply the equation for v¢, by sgn,, (v
u u y ply q u n

1w —Vvo) and
integrate over € to obtain

d (v — o) 1
/Qué?—t sgnn(vfl —vo)dx—d/QA(vfi —p) sgnn(vfl —vp)dx— : QF(”fwvft) sgn,, (vi; —vo) dx

:d/Avosgnn(vﬁ—vo)dx+/fz(uz,vz,wZ)sgnn(vZ—vo)dx.
Q Q

Finally, we multiply the equation for wy; by sgn, (wj, —wo) and integrate over € to obtain

0 —
/ (Wua o) sgnp (i, —wo)dx — / 1 — wo) sgny, (wi, —wo) dx
Q t

:/Awosgnn( —wy dx-l—/f3 Uy, w )sgn (wt u —wo)dx.
Q

Integration by parts yields

—IJ/ Auy — up) sgny, (uy, —up) dx = [,L/Q|V(ufi —up) ‘2sgn;1 (up, — uo) dx, (43)
Q
_d/ A(vi; —vo) sgny (vi, —vo) dx = d/Q‘V(va — ) |2sgn’n (viy —vo) dx (44)
Q
and
2
—/ A(wi, — wo) sgn,, (wy, —wo) dx = /Q|V(wi —wo)|” sgny (i, — wo) d. (45)
Q

Since sgny is a nondecreasing function, the integrals (#3)-(#5) are nonnegative. In view of the

assumption that ug, vy, wo € w1 (Q) and since u < M, there exists a constant C; > 0 independent of
€ and u such that

b [ Auosgny (= 0)dx < g Auol 1) < 1,
d/Avosgn (v —vo)dx < d||Avol|11(q) < Ci
Q

and
/ Awgsgnp (wi; —wp) dx < [Awo || 11(q) < Ci-
Q

Moreover, in view of the L™ estimates (11)), (18)) and (30) we deduce that there exists a constant Cg > 0
independent of € and pt such that

/f1 Uy, Vi, W) 8g0y (g — ) dx < Co, /sz(ui,vfl,wﬁ)sgnn(vfl—vo)dx§C9

an
/f3 Uy, Vi, Wiy ) sgnp (wy —wo) dx < Co.

Thus, we deduce from the previous estimates that
d(ué — ug 1
/ ( uat ) Sgnn(uﬁ —up)dx+ E/ F(ui,vi) sgnn(ufl —up)dx < Cy+Co,
Q Q

16



(v, — o) 1
/Q Ilat _sgnn(vﬁ—vo)dx—g QF(ui,v'ﬁ)sgnn(vi_vO)dXSCI+C9

and

d(wi, —wo)
/QTSgnn(W;i —wo)dx < C] +C9

Lebesgue’s dominated convergence theorem yields in the limit n — O that

£

(Ut — a(vé — J -
/ (l/lu Lt()) Sgn(uz —M())dX"‘/ (v'u—vo)sgn(vz —VO>dx—|—/ Msgn(wﬁ —W())dx
o Q

ot o dt ot
1
+E QF(ui,vﬁ)(sgn(uZ—uo)— sgn(vy —vo))dx < 3(Cy +Co).
Thus,
[ w0+ 1 — vol + s, —wol -+ [ P vE) (sen(u o) — sen(v, —vo))
dr o uu uo vu Vo Wll wo e /o u#,vu sgn uu uo sgn Vll Vo

<3(C1 +Gy).
Since F (ug,v) = 0 by the assumption (Hy)(ii), then by using Lemma|[5.1| we obtain

F (uy vy ) (sgn(uy —uo) — sgn(vyy —vo)) = (F (uy, viy) — F (uo, vo)) (sgn(uy, —uo) — sgn(vy, —vo)) =0,

which implies that

d
7 Q(|uﬁ—uo‘-l-‘vﬁ—vﬁ!+‘wz—wo‘)dx§3(C1—|—C9). (46)
Integrating in time ¢ over (0, T) implies for Cg = 3(Cy + Cy). O

Now we prove that the time translates of uﬁ , vﬁ and Wft are bounded in the L' norm uniformly in
the translation parameter 7.

Lemma 5.4. There exists a constant Cyo such that for every t € (0,T)

T—r T—r
/0 /Q|ufl(x,t+f)—ufl(x,t)’dxdt+/0 /Q‘vft(x,t—kr)—vﬁ(x,tﬂdxdt

Tt 47
+/O /Q’wfl(x,t—l—r)—wﬁ(x,t)’dxdtgClOT
where C\ is independent of T,€ and |L.
Proof. Let ug(x,t) = ug (x,t +7T), ve(x,1) = vi; (x,2 + T) and we(x,1) = wy (x,7 + 7) and let u(x, t) =
up (x,1), v(x,t) = vi (x,1) and w(x, 1) = wi (x, ) Multiplying the equation for ur —u by sgnp (uc —u)

and integrating over Q yield
0 —
/ Msgn (ur—u)dx—,u/ A(ur —u)sgn, (u; —u)dx
o Ot n Q 1
1

—%—-/Q(F(uf,vf)——FKu,v))sgnn(uf——u)dx::Q/;(j](uf,vfnvr)——j](uq@m&)sgnn(uf——u)dx

S
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Similarly, by multiplying the equation for v; —v by sgn,, (vz —v) and integrating over Q we obtain

d(vy—v)
/Q#sgnn(vf—v)dx—d/QA(vT—v)sgnn(vr—v)dx
1

——/Q(F(ur,vr)—F(u,v))sgnn(vf—v)dx:/Q(fz(uf,vf,wr)—fz(u,v,w))sgnn(vf—v)dx.

E

Finally, by multiplying the equation for wr —w by sgn,, (wr —w) and integrating over Q we obtain

9 (we —
/ Ilwe=w) sgny w)dx — / w)sgn, (we —w)dx
Q ot
- / (F3 tesveswe) — (v, w)) sgny (we — w) d.
Q
As in the proof of Lemma [5.3] integration by parts yields that
—.U/ A(ug —u)sgny (ur —u)dx = ,u/ |V (u; — u)|2sgn’n(uf —u)dx >0,
Q Q
_d/ A(ve —v)sgn (ve —v)dx = d/ |V(vy — v)|zsgn'n (ve—v)dx >0
Q Q

and
—/A(wr w)sgny (wr —w)dx = /\V w)|? sgn (we —w)dx > 0.
Q

By using Lebesgue’s dominated convergence theorem we obtain that, as n — 0,

d(ur —u) d(ve—v) d(wr—w)
/Qngn(uT—u)dx—i—/Qngn(vf—v)dx—f—/Qngn(wf—w)dx

+é/Q(F(uT,vT)—F(u,v))(sgn(ur—u)— sgn(vy —v))dx
S/Q{(fl(uf,vf,wf)—fl(u,v,w))sgn(uf—u)+(f2(uf,vf,w7)—fz(u,v,w))sgn(vf—v)
+(f3(uz,ve,we) — f3(u,v,w))sgn(wy —w)} dx,

where we used (F (uz,ve) — F (u,v))(sgn(ug —u) — sgn(v; —v)) > 0. In view of Lemmas [5.1]and [5.2]
we deduce that

d
o | e =+ el hwe =) £ € [ (s =+ e =]+ e~ wl) o
tJo Q
Gronwall’s inequality and (42)) imply
(o) = o) vele) = v(0) + elt) = ()

< (/Q(|uf(0) —u(0)] +[vz(0) —v(0)| + |w¢(0) —W(O)|)dx) Lt
< C36C7T”L'. (48)
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Finally, we integrate the last inequality over (0,7 — T) to obtain that

/ _T/(Iur(t)—u(t)l+|vf(f)—V(t)|+\wf(t)—W(t)l)dxdt < Ciot,
0 o

where Cjo = CgTe“T . L]

We prove that the space translates of u“, Vu and wﬁ are bounded in the L! norm uniformly in the

translation parameter £. We need the following lemma.

Lemma 5.5. For each r € (0,7) and 7 > O sufficiently small it holds that

T
‘U/ /Q/(uli(x‘l‘é,t)_ui(x,t))zdxdt§C5|§|27 (49)
/ /Q/ Vip(x+&,1) — v (x )2 dxdr < G5, 0
/0 /Q/r(wli(x‘f’g,t)_Wﬁ(x,t))zdxdtsc6‘€|2 1)

forall & € RN such that |&| < r where the constants Cs and Cg are from Corollaryand Lemma
respectively.

Proof. By direct calculations we get

2

//, (x4 &,1) —ufy (x,1))  dxdr = ///(/ aeux+62§) )dxdt

2

—u/ /Q</ Vi, (x + 08 1 )gae) drds
gmgyz/o/o /er‘Vqu(x—FGQt)‘zdxdth
<ulgh [ [ wien Pasa

< GslEP
due to the Holder inequality and (34). Analogously we prove (50) and (5TJ. O

Lemma 5.6. For eachr € (0,7) and ? > 0 sufficiently small, there exists a positive function p(§) such
that p(&) — 0 uniformly in € and p as |&| — 0 and

T T
/0 /Qr|uft(x+§,t)—uZ(x,t)‘dxdt+/O /Qr|vft(x+§,t)—vfl(x,t)‘dxdt

) (52)
+/0 /Qr‘wi(x-i-é,t) — W& (x,1)| dedr < p(E)

forall & € RY such that |E| < r.
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Proof. Letug = up (x+&,t),ve = v (x+&,t) and weg =wj (x+&,1) and let u = uj; (x,1),v = v§ (x,1)
and w = wy, (x,#). We start by multiplying the equation for ug —u by sgn, (ug —u)y, where y is
defined by (16), and integrating over Q. x (0,) to obtain

torod(ug —u) [
/0 /S);ngnn(ug—u)q/dxds%—g/o /er(F(ug,v&)—F(u,v))sgnn(ug—u)l//dxds

:'u/OI/Q/VA(%_M)Sgnn(ug_M)Wdde+/Ol/gz,r(fl(ug,v&wé)_fl(u,v7w))sgnn(u§_u)deds'

Similarly, we deduce from the equations for v —v and we — w that

L od(ve—v) 1 [t
/0 /Q’r — 5 sgnn(v§—V)l,dedS—E/o /Q/r(F(ug,Vg)—F(u,v))sgnn(v§—v)l,l/dxds

t t
:d/o //A(v§—v)sgnn(v5—v)u/dxds+/0 /Q/(fz(ug,v@wé)—fz(u,v,w))sgnn(vé —v)ydxds
and
Lrod(we —w) !
// ngnn(wé—w)y/dxds:/ / A(weg —w) sgnp (we —w)ydxds
0 Ja, 0 /oL
t
[ (atugvgwg) = o) seng (g —w)wdeds,

The integrals with Laplacians can be further handled by the integration by parts formula. Thus, for
example,

u/ol /Q Aug — ) sany (ug — u)ydxds
:—‘u/ot/,rV(ué—u)-V(sgnn(ug—u)l//)dxds
:-u/ot Q/‘V(ug—u)fsgn’n(ug—u)lydxds—,u/OI/Q/ sgny (uz —u)V (ug —u) - Vi dxds
< _“/Ot/g, seny (g — 1)V (ug — ) - Viydrds

where the boundary integral is equal to zero due to vanishing y at the boundary of /. and the in-
equality follows from the fact that the first integral on the third line is nonnegative. Similarly, we
obtain

t t
d/ / A(ve —v)sgny (ve —v)ydxds < —d/ / sgny (ve —v)V(ve —v) - Vydxds,
0 Ja, 0 /@,

t t
/ / A(weg —w)sgn (we —w)ydxds < —/ / sgn, (we —w)V(wg —w) - Vydxds.
0 JQ 0 Ja
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Next we apply Lebesgue’s dominated convergence theorem to deduce from the equation for ug — u
that

[ 2 santu —pwasass L[ (g v Fn)sentug - wpana
————sgn(ug —u s+— ug,ve) —F(u,v))sgn(ug —u s
0 Joo o1 gniug v elo Jor & Ve gniug 14
t
g—,u// sgn(ug —u)V(ug —u)-Vydxds
0Jo
t
+A /S)/(fl(ué,v§,w5)—fl(u,v,w))sgn(ug—u)llldxds,
from the equation for ve — v that
[ [ 2 santvs —vwasas— L [ [ (Flug.ve)— P sante ~mwana
————sgn(vg —v §—— ug,ve) —F(u,v))sgn(ve —v s
o Joo O gnve v elo Jo § Ve gnive 14
t
§—d// sgn(ve —v)V(ve —v) - Vydxds
0 Jo
t
—|—//(fz(u;;,v&,wé)—fz(u,v,w))sgn(%—v)l//dxds
0 Jo
and from the equation for wg — w that
L[ od(we—w) !
// ngn(m;—w)l/fdxdsﬁ—// sgn(wg —w)V(wg —w) - Vydxds
0o Jo 0 Joy
t
[ (sl veove) = v sentng e,
The integration by parts formula, the Holder inequality and imply that
t t
—u// sgn(ug—u)V(ué—u)-Vl//dxds:—/,t// V‘ug—u}-Vl//dxds
0 JQ, 0 /g,
t
B “/0 /Q/ {ué _u’AWdXdS < .LL\/TH’% _””Lz(glrx(oj))HAWHLZ(Q’,) < v /'LTCSHAW”LZ(Q’r)‘a'
Moreover, since 4t < M, then
t
i [ senlug =)V lug =) Vydrds < /MTC AV 0 €1
In view of (50) and we deduce in a similar way that
t
—d [ [ sentvg =) V(vg =) Vyrdeds < VATCS A 3y 2
and

t
=[] sentosg =)V lorg =) Vyrdeds </ TCol Al g [
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Next we set C11 = MTCs||Ay||12(qr), C12 = VAT Cs||Ay|| 2y and Ci3 = /T Ce||AW]| 2y Thus,

g ) axas+1 [ [ (F F drd
[, st —wwasass [ [ (g ve) < PG sentus —wwasas

(53)
t
<Culel+ [ [ (filugovgone) = Al senlu — s,
as well as
trod(ve—v) 1 [
// —sgn(v5—v)l//dxds——//(F(ug,vé)—F(u,v))sgn(%—v)l//dxds
0 Jo ot EJo Jor
r ; T (54)
<Culel+ [ [ (lugveomg) = folun)) senlvg —v)ysds
d
o L[ od(we —w)
| sentwe —wyavas < Ol
A (55)
+ (f3(u§,vé,w§)—fg(u,v,w))sgn(wé—w)l[/dxds.
0 Jar
In view of Lemmas 5.1]and[5.2] summing up (53)—(53)) yields
! d
// a—(‘Mg—M‘+|V5—v‘+‘W§—WDI//dde§(C11+C12+C13)|§|
0 Ja ot (56)

t
40 [ (g =]+ v =v] + g — ] ytes.
0 Jo

Moreover, the uniform continuity of the initial data ugp,vo and wg in Q implies that there exists a
positive function @ such that ®@(§) — 0 as |§| — 0 and

/, (luo(x+ &) —uo(x)| + [vo(x+ &) —vo(x)[ + [wo(x+ &) —wo(x)]) ydx < @(5).

r

Thus, we obtain from (56) that
/Q, (Jug (1) = u(@)| + [ve (1) = v(0) |+ [we () =w(n)|) wdx < @(&) + (C11 + Cra+C13) €|

+C7/0 /Q/r(‘ug(s)—u(s)}—i—|v§(s)—v(s)‘—|—}w§(s)—w(s)‘)l//dxds.

Finally, we deduce from Gronwall’s inequality that
ug (1) —u(t) |+ |ve (1) = v(0)| + [we (1) —w(t) )y dx < (@(&) + (Cr1 +Cra+C13)[E])eT

/X
(57)

Since 0 <y <1inQ, yw=1inQ, and Q, C Q, we obtain by integrating in time over
(0,7) and setting p(&) = (@(§) + (C11 +Ci2 +C13)|§]) T O

/!
r
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In view of the uniform L estimates (11)), (18] and (30) we can use (¢7) and (52)) to show that the
time and space translates converge to zero uniformly in € and u as the translation parameters tend to
zero in the LP norm for any p € [2,00).

Corollary 5.7. Let p € [2,). a) There exists a constant Cy4 such that for every T € (0,T)

T—7 T-t
/0 /Q‘uZ(x,H—‘L')—ufl(x,t)‘pdxdt+/0 /gz‘vi(x,t+r)—vi(x,t)|pdxdt

Tt (58)
+/0 /Q}Wﬁ(X,tan)—wa(x,t)\pdxdt§C14r,

where Cy4 depends on p but not on T,€ and [L.
b) For each r € (0,7) and ? > O sufficiently small, there exists a positive function p (&) such that
p(&) — 0 uniformly in € and p as |E| — 0 and

T T
| [ g —uhenPasas [ ] g0 - i) axa

i (59)
+/0 /s2r|wi(x+§,t) — &, (1) | dedr < ()

forall & € RN such that |E| < r.

Proof. Tt follows from the uniform L™ estimate (I8]) that

T—-7
/ /‘”mx?t"‘f)—uz(x,tﬂpdxdt
0 Q
T—7 B
:/o /Q|ufz(x,t+f)—uﬁ(x,t)‘l’ |uaf, (x,1 4 T) — ufy (x,1)| dxdr

T—7
g(zcu)l”/o /Q}uft(x,t—l—r)—uﬁ(x,tﬂdxdt.

In view of we obtain the first part of (58)). Analogously we estimate the remaining integrals. [
Corollary 5.8. The sequences {uy, }, {v;,} and {wy, } are relatively compact in LP(Qr) for p € [1,00).

Proof. The estimates (58) and (59) imply that the differences of space and time translates of uj,, vy
and wﬁ tend to zero uniformly in € and u in the L? topology as the translation parameters tend to
zZero.

Moreover, in view of (18]) we have that

T T
/ / (5 (x,1))P dedr < C2|Q|T and / / (s (x,1))P dxdr < CETSy(r),  (60)
T-1JQ 0 Ja\Q,

where S>(r) = fQ\Qr ldx, and similar estimates hold for vj; and wy;. The Fréchet-Kolmogorov the-

orem applied to {uj }, {vi;} and {w}} yields that these sequences are relatively compact in
LP(Qr). O
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6 Proof of main theorems

In this section we complete the proof of Theorems[2.3|and

As in [7]], it follows from Corollary and the uniform L*-boundedness of the sequences {uﬁ},
{vi;} and {w}} that there exist subsequences {ujy, }y,>0. {Vj, }>0 and {wy, }y,~0 and functions
ut,v&, wf € L*(Qr) such that for p € [1,00)

£
L

£
L

=

u i

c—ut, vy =vE wh —w® strongly in LP(Qr) and a.e. in Qr

as t — 0. The sequences {u®}, {v¢} and {w?} are relatively compact in L”(Q7) for each p € [1,00),
as well as uniformly bounded in L*(Qr). Indeed, the relative compactness of the sequences {u®},
{v¢} and {w?} follows from Corollary and a remark that all the estimates on space and time
translates in Section 4 are uniform in €. Moreover, the functions u®,v® and w® are a unique weak
solution of Problem (%) in the sense that they satisfy (12)-(15).

Proof of Theorem Corollary[5.8|and the uniform boundedness of the sequences {u}¢~0, {V¢}e0
and {w®}¢~( imply that there exist subsequences {u®}¢ -0, {v%}g 0 and {w}¢ o and functions
u,v,w € L*(Qr) such that (6) is satisfied. This completes the proof. ]

We next go to the proof of Theorem[2.4] Let us denote
r=u*+v% and z=u+w
We deduce from Theorem [2.3]that for p € [1,00)
2% — z strongly in L”(Q7) and a.e. in Qr

as & — 0.

Proof of Theorem[2.4} Since ¢ is Lipschitz continuous then the convergence (7) implies that ¢ (z%) —
¢(z) strongly in LP(Qr) for p € [1,0) and a.e. in Or as & — 0. By taking & = & in for
¢ € C>1(Qr) and passing to the limit & — 0 we deduce that

//QTw(z)—v)mxdr:o

for all { € C>!(Qr). Thus, v = @(z) a.e. in Q. We deduce from and that z% satisfies
—/ 206 (0)dx = // (dv* A& + ((1 —2%)z% 4 az%*w™)E +2%&;) dxdr, (61)
Q Or

where zo = ug +vo and & € C>!(Qy) is such that & (x,T) = 0in Q and d,& = 0 on dQ x [0, T]. Thus,
in view of (6), (7) and the identity v = @(z) a.e. in Qr we deduce (8) and (9) from and
respectively, as & — 0.

It remains to show that z,w € C([0,T];L'(Q)). In the view of (@8], taking t; — 0 and & — 0 the
continuity immediately follows from the Arzela-Ascoli Theorem. Since the uniqueness of the weak
solution of Problem (%?) was proved in [6], the proof is complete. O
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