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Abstract

A reaction-diffusion-ODE model for the Neolithic spread of farmers in Europe has been re-
cently proposed in [7]. In this model, farmers are assumed to be divided into two subpopulations
according to a mobility rule, namely, into sedentary and migrating farming populations. The
conversion between the farming subpopulations depends on the total density of farmers and it is
superimposed on the classical Lotka-Volterra competition model, so that it is described by a three-
component reaction-diffusion-ODE system. In this article we consider a singular limit problem
when the conversion rate tends to infinity and prove under appropriate conditions that solutions
of the three component system converge to solutions of a two-component system with a linear
diffusion and nonlinear degenerate diffusion.

Keywords: reaction-diffusion system; Lotka-Volterra; singular limit problem; nonlinear degener-
ate diffusion

1 Introduction
Since the pioneering works by Fisher [9] and Kolmogorov-Petrovsky-Piskunov [10], reaction-diffusion
equations are widely used for modelling propagation phenomena in the field of mathematical biology,
specifically, population dynamics and population genetics. Besides the Fisher-KPP equation we can
find many interesting model equations related to the propagation phenomena (see [13]). The recent
works [6] and [7] treat new models for the propagation of the neolithic transition and numerically
exhibit interesting transient spatial patterns in addition to mathematical studies.
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In this article we deal with a model for the Neolithic transition which was developed in [7]. The
spread of farmers into regions occupied by hunter-gatherers began during the neolithic transition pe-
riod. Archeological evidence indicates that the expanding velocity of farmers is roughly constant
all over Europe. In order to make this phenomenon clear, several population models have been pro-
posed. One of the basic macroscopic models is a demic diffusion model described by the Fisher-KPP
equation. As for a cultural diffusion model describing the expansion of farmers into the regions occu-
pied by hunter-gatherers, Ammerman and Cavalli-Sforza ([1]) proposed a two component reaction-
diffusion system for farmers and hunter-gatherers, which is a natural extension of the Fisher-KPP
equation. In addition, there is a demic-cultural diffusion model, which is a mix of the two models
above. It has the form of a three component system for the original farmer population, the migrating
farmers and the hunter-gatherers ([2]). In those models it is assumed that the dispersal of farmers is
random movement. However, one observes that the farmer populations are basically sedentary and
that if the density becomes higher, they are forced to disperse. This indicates that the dispersal of
farmers is not purely random.

Here we make the following assumptions:

(A1) farmers are basically sedentary,

(A2) if the density of sedentary farmers becomes higher, some of them become migratory and dis-
perse randomly because of the population pressure,

(A3) if the environmental conditions become better for farmers, the migratory farmers stay in their
region.

We note that the sedentary and the migratory farmers are not different from a genetic point of view.
They change their movement according to the environmental conditions. This leads us to introduce
two types of farmers, namely, the sedentary farmers and the migratory ones which convert into each
other with some probability.

We make use of a reaction-diffusion-ODE model, proposed in [7], describing the spatio-temporal
evolution of sedentary and migratory farmers and hunter–gatherers in the Neolithic transition. From
the point of view of ecology, the model stems from the fact that a lifestyle of agriculture and settlement
can support a much larger population density than hunting and gathering. Therefore, it is assumed in
our modelling framework that farmers preferentially lived a sedentary lifestyle which could convert
to a migratory one if the population of farmers grows over some critical densities. To the best of our
knowledge, this assumption was not considered elsewhere except for [7] and [6].

We first introduce the model of sedentary and migrating farmers. Let F1 and F2 be the densities
of sedentary and migrating farmers. The spatial and temporal evolution of farmers is modelled by the
following system of equations

F1,t = r1

(
1− F1 +F2

KF1

)
F1−

1
ε
(P(F)F1− (1−P(F))F2) ,

F2,t = dF2∆F2 + r2

(
1− F1 +F2

KF2

)
F2 +

1
ε
(P(F)F1− (1−P(F))F2) ,

(1)

where Fj,t = ∂tFj. In (1), r1 and r2 are the intrinsic growth rates of F1 and F2, KF1 and KF2 are the
carrying capacities of F1 and F2, dF2 is the rate of random dispersion of the migrating population of
farmers F2 and F = F1 +F2. The conversion between F1 and F2 is given by a probability density
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function P, which depends on the total population of farmers F , P = P(F), and where P(F)F1 is the
conversion rate from F1 to F2 and (1−P(F))F2 is the conversion rate from F2 to F1. The probability
P satisfies

(i) P(0) = 0,
(ii) P′(F)> 0 for F > 0,
(iii) lim

F→∞
P(F) = 1.

As a specific example, we may consider

P(F) =
F

F +Fc

where Fc is a positive constant such that P(Fc) = 1/2. The conversion mechanism can be best seen
by considering the “extreme” situations, namely, when F � Fc and F � Fc. In the first case when
F � Fc, the probability P(F) is high, say P(F) ≈ 1, and we have that P(F)F1− (1−P(F))F2 ≈ F1.
This term in (1) implies that the sedentary farmers F1 convert actively to the migrating farmers F2.
In the case when F � Fc we have P(F) ≈ 0 and so P(F)F1− (1−P(F))F2 ≈ −F2. This term in (1)
implies that the migrating farmers F2 convert to the sedentary farmers F1. The extent of conversion is
given by the constant 1/ε .

By taking the population of hunter-gatherers into account, we can extend the system (1) to the full
farmer–hunter system

F1,t = r1

(
1− F1 +F2

KF1

)
F1−

1
ε
(P(F)F1− (1−P(F))F2)+ eF1F1H,

F2,t = dF2∆F2 + r2

(
1− F1 +F2

KF2

)
F2 +

1
ε
(P(F)F1− (1−P(F))F2)+ eF2F2H,

Ht = dH∆H + rH

(
1− H

KH

)
H− eF1F1H− eF2F2H,

(2)

where dH , rH and KH are, respectively, the rate of dispersion, the intrinsic growth rate and the carrying
capacity of H, and eF1 and eF2 are the conversion rates from H to F1 and F2. All parameters in (2) are
positive constants.

Since the timescale of the conversion between F1 and F2 is fast, compared with the growth of F1
and F2 and the conversion from H to F1 and F2, we assume that ε is a small parameter in contrast to the
other parameters in (2). Moreover, the sedentary and migrating farmers F1 and F2 are not genetically
distinguished in the total population of farmers F = F1+F2. Hence, it leads us to the natural question
whether the system (2) for (F1,F2,H) can be reduced to a system for (F,H). In fact, adding the
equations of F1 and F2, we obtain an equation for F . However, it is not a closed system for (F,H).
Taking ε→ 0, we formally obtain the relation P(F)F−F2 = 0 in the limit. Then the system becomes
a closed system. We note that the limit system is no longer a simple reaction-diffusion system for
(F,H) but a degenerate, nonlinear diffusion system which includes the conversion rate P(F) in the
diffusion term. This kind of limiting procedure is called a fast reaction limit and has been extensively
used in literature ([5], [8], [12] et al.) in order to prove the validity of the formal procedure. However,
by the conditions for P, which are natural in our model, the previous results are not applicable to our
case (see [12]). The purpose of this paper is to apply a fast reaction limit method and prove that the
limit system approximates the original system in a suitable way.
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The organisation of this paper is as follows. In Section 2 we state the main theorems in addition
to the notations and definitions. In Section 3 we introduce the Fréchet-Kolmogorov compactness
theorem, which plays a key role to obtain the main results. In Section 4 we provide a priori L∞-
estimates which are uniform in ε and µ . While we apply maximum principle arguments to find an
upper bound for the function F1, we estimate Lp-norms of F2 to finally obtain a L∞-bound. In Section
5 we use the a priori estimates to prove the relative compactness of sequences of solutions. Finally,
in Section 6 we complete the proof of the main theorems.

2 Preliminaries and main results
We assume

K := KF1 = KF2, e f := eF1 = eF2, r := r1 = r2,

and set

a := e f KH/r, b := e f K/r, ε
′ = εr, d := dF2/dH , r′ = rH/r.

After making the transformations in (2) as

x′ :=
√

r/dH , t ′ := rt, u := F1/K, v := F2/K, w := H/KH ,

and dropping the primes, we obtain a system of equations for

(Pε)



ut = (1−u− v)u+auw− 1
ε
(ϕ(u+ v)− v) in QT ,

vt = d∆v+(1−u− v)v+avw+
1
ε
(ϕ(u+ v)− v) in QT ,

wt = ∆w+ r(1−w)w−b(u+ v)w in QT ,

∂νv = ∂νw = 0 on ΓT ,

(u(·,0),v(·,0),w(·,0)) = (u0,v0,w0) x ∈Ω,

where we put ϕ(s) := sP(Ks). We suppose that Ω is an open, bounded domain in RN with a suf-
ficiently smooth boundary (e.g., ∂Ω ∈ C2), QT = Ω× (0,T ) and ΓT = ∂Ω× (0,T ) for an arbitrary
T > 0. The coefficients a,b,c,d,r and ε are positive constants. By W 2,1(Ω) we denote the space of
all functions f such that f ,∇ f ,∆ f ∈ L1(Ω).

We assume

(Hϕ)


ϕ ∈C2(R+), ϕ(0) = ϕ

′(0) = 0,

0 < ϕ(s)< sϕ
′(s) and 0 < ϕ

′(s)< 1 for s > 0, lim
s→∞

(s−ϕ(s)) = C̃,

ϕ
′′(s)≥ 0 for s ∈ [0,2(1+a)),

for a positive number C̃. We remark that the last assumption is necessary for the proof of the existence
of a unique solution of Problem (P) which will be given below.

The next lemma shows that the probability density P(s) follows from ϕ(s) satisfying (Hϕ).
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Lemma 2.1. Under the assumptions of (Hϕ) the probability density P(s) := ϕ(s/K)/(s/K) (s > 0)
satisfies

(i) lims→0 P(s) = 0,

(ii) P′(s)> 0 for s > 0,

(iii) lims→∞ P(s) = 1.

Proof. The assertion of (i) immediately follows from the definition of P(s) and ϕ ′(0) = 0. We com-
pute

P′(s) =
ϕ ′(s/K)

s
− Kϕ(s/K)

s2 =
K[(s/K)ϕ ′(s/K)−ϕ(s/K)]

s2 > 0.

Finally the assumptions of (Hϕ) imply that s−ϕ(s) is monotone increasing and s−ϕ(s)< C̃, so

s−C̃ < ϕ(s)< s. (3)

Thus
s/K−C̃/K

s/K
<

ϕ(s/K)

s/K
= P(s)< 1,

which yields lims→∞ P(s) = 1.

Lemma 2.2. With P̃(s) := s/(s+Fc), the function ϕ̃(s) := sP̃(Ks) satisfies (Hϕ) for C̃ = Fc/K.

Proof. We first write

ϕ̃(s) =
s2

s+Fc/K
=

s2

s+C̃
= s
(

1− C̃
s+C̃

)
.

Then we easily see
ϕ̃ ∈C2(R+), ϕ̃(0) = ϕ̃

′(0) = 0

hold. On the other hand

0 < ϕ̃
′(s) =

s(s+C̃)

(s+C̃)2
= 1− C̃2

(s+C̃)2
< 1 for s > 0,

and

sϕ̃
′(s)− ϕ̃(s) =

s2C̃
(s+C̃)2

> 0 for s > 0.

Finally,

lim
s→∞

(s− ϕ̃(s)) = lim
s→∞

sC̃
s+C̃

= C̃ and ϕ
′′(s) =

2C̃2

(s+C̃)3
,

which completes the proof.

By the monotonicity of ϕ we can define the inverse ϕ−1 on [0,∞) and it follows from (3) that

s < ϕ
−1(s)< s+C̃ for s≥ 0. (4)

Indeed, the second inequality in (3) yields the first inequality in (4) and the first inequality in (3) is
equivalent to s < ϕ(s+ C̃) for all s ≥ −C̃ which leads to the second inequality in (4). Moreover,
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we define α(s) := s−ϕ(s) and assume C̃ > 1+ a. Then 0 < α ′(s) < 1 for s > 0 and α is a strictly
increasing function on R with values in [0,C̃). The inverse function α−1 is strictly increasing on
[0,C̃), and so on [0,1+ a]. As a consequence of the monotonicity of α−1 on [0,C̃) and in view of
(Hϕ), we have

s≤ α
−1(s)≤C2s for 0≤ s≤ 1+a, C2 :=

α−1(1+a)
1+a

, (5)

where the second inequality follows from the convexity of the graph of α−1 in [0,1+ a], indeed
α ′′(s) =−ϕ ′′(s)≤ 0 in 0≤ s≤ 1+a. These two inverse functions play important roles in the proof
of the main result.

Next, we assume that the initial functions u0,v0,w0 ∈W 2,1(Ω)∩C(Ω) satisfy

(H0)(i) u0 ≥ 0, v0 ≥ 0, 0≤ u0 + v0 ≤ 1+a and 0≤ w0 ≤ 1 in Ω,

(H0)(ii) ϕ(u0 + v0) = v0 in Ω.

We are now in a position to state our main theorem on the singular limit of Problem (Pε) as ε

converges to 0.

Theorem 2.3. Assume (Hϕ) and C̃ > 1 + a. Let T > 0. Let {uε}ε>0, {vε}ε>0 and {wε}ε>0 be
solutions to (Pε) satisfying (H0)(i)− (ii) and let p ∈ [1,∞) be arbitrary. Then there exist subse-
quences {uεk}εk>0, {vεk}εk>0 and {wεk}εk>0 of the sequences {uε}ε>0, {vε}ε>0 and {wε}ε>0, func-
tions u ∈ L∞(QT ), v ∈ L∞(QT ) and w ∈ L∞(QT ) such that

uεk → u, vεk → v, wεk → w strongly in Lp(QT ) and a.e. in QT (6)

as εk→ 0.

Let us denote
zεk = uεk + vεk and z = u+ v,

where u and v are the limit functions in Theorem 2.3. We deduce from Theorem 2.3 that for p∈ [1,∞)

zεk → z ∈ L∞(QT ) strongly in Lp(QT ) and a.e. in QT (7)

as εk→ 0. Then we can assert that (z,w) is the unique weak solution of Problem

(P)


zt = d∆ϕ(z)+(1− z)z+azw in QT ,

wt = ∆w+ r(1−w)w−bzw in QT ,

∂νϕ(z) = ∂νw = 0 on ΓT ,

(z(·,0),w(·,0)) = (z0,w0), x ∈Ω,

where z0 = u0 + v0 is such that 0≤ z0 ≤ 1+a. Following [3], we define a weak solution of Problem
(P) as z,w ∈C([0,T ];L1(Ω))∩L∞(QT ) and

−
ˆ

Ω

z0ξ (0)dx =
¨

QT

(dϕ(z)∆ξ +((1− z)z+azw)ξ + zξt) dxdt, (8)

−
ˆ

Ω

w0ξ (0)dx =
¨

QT

(w∆ξ +(r(1−w)w−bzw)ξ +wξt) dxdt (9)
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hold for all test functions ξ ∈C2,1(QT ) such that ξ (x,T ) = 0 in Ω and ∂νξ = 0 on ∂Ω× [0,T ].
We remark that the existence and uniqueness of the weak solution of Problem (P) can be estab-

lished by modifying the arguments in [3] and [6]. In fact, the well-posedness of Problem (P) and
the uniqueness for a weak solution z,w ∈ C(QT ) as well as the large time behaviour of solutions
of Problem (P) has been studied in [6]. In particular, it is proved in [6] that any solution (z,w) of
Problem (P) satisfies

0≤ z≤ 1+a and 0≤ w≤ 1 (10)

in Ω× [0,∞). Moreover, the solution orbits converge to a steady state uniformly in C(Ω)2 as t → ∞

and, depending on the coefficient b, the convergence has either exponential rate if b 6= 1 or algebraic
rate if b = 1 in the Lp topology for each p ∈ [1,∞).

We remark that the limit functions u and v are given by v = ϕ(z) and u = z−ϕ(z) and that the
equation for z is parabolic degenerate since ϕ ′(0) = 0 while the equation for w is uniformly parabolic.

In the sequel we obtain the next theorem.

Theorem 2.4. Assume the same assumptions as in Theorem 2.3. The pair of functions (z,w) =
(u+v,w) given by the limit functions (u,v,w) in Theorem 2.3 coincides with the unique weak solution
of Problem (P) with z0 = u0 + v0 ∈C(Ω) and w0 ∈C(Ω).

As in [7], we consider the regularised problem

(Pε,µ)



ut = µ∆u+(1−u− v)u+auw− 1
ε
(ϕ(u+ v)− v) in QT ,

vt = d∆v+(1−u− v)v+avw+
1
ε
(ϕ(u+ v)− v) in QT ,

wt = ∆w+ r(1−w)w−b(u+ v)w in QT ,

∂νu = ∂νv = ∂νw = 0 on ΓT ,

(u(·,0),v(·,0),w(·,0)) = (u0,v0,w0) x ∈Ω,

where 0 < µ < M for some positive constant M. Problem (Pε,µ) admits a unique nonnegative clas-
sical solution (uε

µ ,v
ε
µ ,w

ε
µ) ∈ [C2,1(Ω× (0,T ])∩C(Ω× [0,T ])]3. Moreover, it holds that

0≤ uε
µ ,v

ε
µ and 0≤ wε

µ ≤ 1 (11)

in QT .
It is proved in [7] that the solution (uε

µ ,v
ε
µ ,w

ε
µ) of Problem (Pε,µ) converges to the unique solu-

tion (uε ,vε ,wε) of Problem (Pε) as µ → 0 for ε > 0, where

uε ∈C0,1([0,T ];L∞(Ω)),

vε ,wε ∈ L∞(0,T ;L2(Ω)) ∩ L2(0,T ;H1(Ω)), vε
t ,w

ε
t ∈ L2(0,T ;(H1(Ω))′),

(12)

and

−
ˆ

Ω

u0ξ (0)dx =
¨

QT

((
(1−uε − vε)uε +auεwε − 1

ε
(ϕ(uε + vε)− vε)

)
ξ +uε

ξt

)
dxdt, (13)

−
ˆ

Ω

v0ξ (0)dx =
¨

QT

(
dvε

∆ξ +

(
(1−uε − vε)vε +avεwε +

1
ε
(ϕ(uε + vε)− vε)

)
ξ + vε

ξt

)
dxdt,

(14)

−
ˆ

Ω

w0ξ (0)dx =
¨

QT

(wε
∆ξ +(r(1−wε)wε −b(uε + vε)wε)ξ +wε

ξt) dxdt, (15)
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for ξ ∈C2,1(QT ) such that ξ (x,T ) = 0 in Ω and ∂νξ = 0 on ∂Ω× [0,T ].
In a similar way we can obtain the singular limit of Problem (Pε,µ) as ε → 0 for µ > 0, namely

Problem (Pµ),

(Pµ)


zt = µ∆(z−ϕ(z))+d∆ϕ(z)+(1− z)z+azw in QT ,

wt = ∆w+ r(1−w)w−bzw in QT ,

∂νϕ(z) = ∂νw = 0 on ΓT ,

(z(·,0),w(·,0)) = (z0,w0), x ∈Ω,

where z0 = u0 + v0. One could also prove that the singular limit of Problem (Pµ) as µ → 0 is given
by Problem (P). Consequently, we can complete the graph on Figure 1.

(Pε) (P)

(Pε,µ) (Pµ)

ε→0

µ→0, ε >0

ε→0, µ >0

µ→0

Figure 1: Schematic representation of the singular limit problems: A regularised problem (Pε,µ) is
obtained from Problem (Pε) by adding a diffusion term into the equation for u. The singular limit of
Problem (Pε,µ) as µ → 0 for ε > 0 is shown in [7]. While the a priori estimates depend on ε in [7],
the uniform estimates in ε and µ , which we obtain in this paper, allow us to prove that the singular
limit of Problem (Pε) as ε → 0 is given by Problem (P). Similarly, we can show the singular limit
of Problem (Pε,µ) as ε → 0 for µ > 0 and the singular limit of Problem (Pµ) as µ → 0.

We therefore treat the regularised problem (Pε,µ) and prove some uniform estimates in ε , µ and
p≥ 2 in the later sections.

3 Compactness theorem
The main tool that is used in this present paper is the following Fréchet-Kolmogorov compactness
theorem, see [4], Theorem 4.26 on p. 111; the form below is taken from [5], Proposition 2.5.

Theorem 3.1 (Fréchet-Kolmogorov). Let F be a bounded subset of Lp(QT ) with p ∈ [1,∞). Assume
that

i) for any η > 0 and any subset ω b QT , there exists δ > 0 (δ < dist(ω,∂QT )) such that

‖ f (x+ξ , t)− f (x, t)‖Lp(ω)+‖ f (x, t + τ)− f (x, t)‖Lp(ω) < η

for all ξ ,τ and f ∈F satisfying |ξ |+ |τ|< δ .
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ii) for any η > 0, there exists a subset ω b QT such that

‖ f‖Lp(QT \ω) < η

for all f ∈F .

Then F is relatively compact in Lp(QT ).

To apply the Fréchet-Kolmogorov theorem, we consider two subsets of Ω, namely Ωr = {x ∈
Ω |B(x,2r) ⊂ Ω} and Ω′r = ∪x∈ΩrB(x,r), where B(x,r) denotes the ball in RN with centre x and
radius r. We have Ωr ⊂Ω′r ⊂Ω. Moreover, we define a smooth function ψ ∈C∞

0 (Ω
′
r) such that

ψ = 1 in Ωr, 0≤ ψ ≤ 1 in Ω
′
r, ψ = 0 in Ω\Ω′r. (16)

We refer to [8] for the precise construction of ψ . Let the sign function be defined by

sgn(s) =


1 if s > 0,
0 if s = 0,
−1 if s < 0.

By sgnη we denote a smooth nondecreasing approximation of the sign function such that sgnη(s) ∈
[−1,1] for s∈R and sgnη converges pointwise to sgn as η→ 0. For example, sgnη(s)= s/

√
s2 +η2.

4 Uniform L∞-estimates
In this section we show that the solution (uε

µ ,v
ε
µ ,w

ε
µ) of (Pε,µ) is such that uε

µ and vε
µ are bounded in

L∞(QT ) uniformly in ε and µ . First we use a comparison principle to show the uniform boundedness
of uε

µ .

Lemma 4.1. It holds that
0≤ uε

µ < C̃ (17)

in Ω× [0,∞), where C̃ is given by (Hϕ) and satisfies C̃ > 1+a.

Proof. Let us define

Lu(s) = st−µ∆s− (1− s− vε
µ)s−aswε

µ +
1
ε
(ϕ(s+ vε

µ)− vε
µ).

We deduce from (Hϕ), namely from the lower bound ϕ(s)≥ s−C̃ and (11) that

Lu(C̃) = C̃vε
µ − (1+awε

µ −C̃)C̃+
1
ε
(ϕ(C̃+ vε

µ)− vε
µ)

≥−(1+a−C̃)C̃+
1
ε
(C̃+ vε

µ −C̃− vε
µ)

= (C̃− (1+a))C̃.

Since C̃ > 1+a we see that Lu(C̃)> 0. Hence, in view of the hypothesis (H0), namely, 0≤ u0≤ 1+a,
it follows from the standard comparison principle that uε

µ < C̃ for all (x, t) ∈Ω× [0,∞).
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For later use we define Cu = max(x,t)∈Ω×[0,∞) uε
µ(x, t). Then, it follows from (17) that

0≤ uε
µ ≤Cu < C̃ (18)

in Ω× [0,∞).
However, we cannot obtain a similar upper bound for the function vε

µ . Nevertheless, we can still
obtain a uniform L∞ estimate for vε

µ , which we do in Corollary 4.5. First we prove some auxiliary
lemmas. We remark that in view of (Hϕ), α(s) = 1−ϕ(s) is strictly increasing from zero to C̃ and
α−1 is well defined on the interval [0,C̃). Moreover, α−1(0) = ϕ−1(0) = 0.

Lemma 4.2. Let p ∈ N, p≥ 2, and Z =U +V , where 0 <U <C and V > 0. Then,

(ϕ(Z)−V )
(
(α−1(U))p−1− (ϕ−1(V ))p−1)≥ 0. (19)

Proof. Since ϕ(Z)−V =U−α(Z), we have that

(ϕ(Z)−V )
(
(α−1(U))p−1− (ϕ−1(V ))p−1)

= (ϕ(Z)−V )
(
(α−1(U))p−1−Zp−1)+(ϕ(Z)−V )

(
Zp−1− (ϕ−1(V ))p−1)

= (U−α(Z))
(
(α−1(U))p−1−Zp−1)+(ϕ(Z)−V )

(
Zp−1− (ϕ−1(V ))p−1)

=
(
α(α−1(U))−α(Z)

)(
(α−1(U))p−1−Zp−1)

+
(
ϕ(Z)−ϕ(ϕ−1(V ))

)(
Zp−1− (ϕ−1(V ))p−1)

≥ 0,

where the last inequality follows from the monotonicity of functions α , ϕ and s 7→ sp−1 for p> 1.

Next for p ∈ [2,∞) we set

Φα(r) =
ˆ r

0
(α−1(s))p−1 ds and Φϕ(r) =

ˆ r

0
(ϕ−1(s))p−1 ds. (20)

Since α−1 and ϕ−1 are nonnegative functions, it holds that Φα(r)≥ 0 and Φϕ(r)≥ 0 for each r from
the corresponding domains of definition.

Lemma 4.3. Suppose that (H0) and (Hϕ) are satisfied. Let p ∈ N, p≥ 2. Then, for t > 0
ˆ

Ω

Φϕ(vε
µ(x, t))dx≥ 1

p

ˆ
Ω

(vε
µ(x, t))

p dx, (21)

and there exists a constant C3 =C3(p) such that
ˆ

Ω

(Φα(u0)+Φϕ(v0))dx≤C3. (22)

Proof. It follows from the lower bound in (4), namely, ϕ−1(s)≥ s for s≥ 0, that

ˆ
Ω

Φϕ(vε
µ)dx =

ˆ
Ω

ˆ vε
µ

0
(ϕ−1(s))p−1 dsdx≥

ˆ
Ω

ˆ vε
µ

0
sp−1 dsdx =

1
p

ˆ
Ω

(vε
µ)

p dx,

10



which completes the proof of (21). Next we prove (22). It follows from the upper bound in (4),
namely, ϕ−1(s)≤ s+C̃ for s≥ 0, that

ˆ
Ω

Φϕ(v0)dx =
ˆ

Ω

ˆ v0

0
(ϕ−1(s))p−1 dsdx≤

ˆ
Ω

ˆ v0

0
(s+C̃)p−1 dsdx

=

ˆ
Ω

1
p
((v0 +C̃)p−C̃p)dx≤ ((1+a)+C̃)p|Ω|

p
,

where we used the uniform bound 0 ≤ v0 ≤ 1+ a from (H0). Similarly, it follows from the upper
bound in (5), namely, α−1(s) ≤C2s for 0 ≤ s ≤ 1+ a, and the inequality 0 ≤ u0 ≤ 1+ a from (H0)
that ˆ

Ω

Φα(u0)dx =
ˆ

Ω

ˆ u0

0
(α−1(s))p−1 dsdx≤

ˆ
Ω

ˆ u0

0
(C2s)p−1 dsdx

=Cp−1
2

ˆ
Ω

up
0
p

dx≤
Cp−1

2 (1+a)p|Ω|
p

.

Thus, setting

C3 =
(
((1+a)+C̃)p +Cp−1

2 (1+a)p
) |Ω|

p
, (23)

we obtain (22).

Lemma 4.4. Suppose that (Hϕ) and (H0)(i) are satisfied, and let p ∈ N, p ≥ 2. Then, there exists a
constant C4 =C4(p) such that for t > 0

ˆ t

0

ˆ
Ω

(uε
µ(α

−1(uε
µ))

p−1 + vε
µ(ϕ

−1(vε
µ))

p−1)dxds≤C4t + p
ˆ t

0

ˆ
Ω

Φϕ(vε
µ)dxds. (24)

Proof. It follows from the uniform bound (18) that Cu = max(x,t)∈Ω×[0,∞) uε
µ(x, t) < C̃. Since α−1 is

nondecreasing then
ˆ t

0

ˆ
Ω

uε
µ(α

−1(uε
µ))

p−1 dxds≤Cu(α
−1(Cu))

p−1|Ω|t =C4t, (25)

where
C4 =Cu(α

−1(Cu))
p−1|Ω|. (26)

Next, we prove for r ≥ 0 that

1
p

r(ϕ−1(r))p−1 ≤
ˆ r

0
(ϕ−1(s))p−1 ds. (27)

To this end we define
Q(r) =

ˆ r

0
(ϕ−1(s))p−1 ds− 1

p
r(ϕ−1(r))p−1

and show that Q(r)≥ 0 for r ≥ 0. We have that Q(0) = 0 and

Q′(r) = (ϕ−1(r))p−2
(

ϕ
−1(r)− 1

p
ϕ
−1(r)− p−1

p
r
(
ϕ
−1)′ (r))

=
p−1

p
(ϕ−1(r))p−2

(
ϕ
−1(r)− r

(
ϕ
−1)′ (r)) .

11



Next we check that for all r > 0
r
(
ϕ
−1)′ (r)≤ ϕ

−1(r). (28)

Let r = ϕ(s). Then, s = ϕ−1(r),
(
ϕ−1)′ (r) = 1/ϕ ′(s) and (28) is equivalent to

ϕ(s)
ϕ ′(s)

≤ s⇐⇒ 1≤ sϕ ′(s)
ϕ(s)

which, in view of (Hϕ), is true for each s > 0. Thus, since p≥ 2 and ϕ−1(r)> 0 for r > 0 we deduce
that Q′(r) ≥ 0 for r > 0. This with Q(0) = 0 implies that Q(r) ≥ 0 for r ≥ 0, which yields (27). In
view of (20) we rewrite (27) as

r(ϕ−1(r))p−1 ≤ pΦϕ(r) (29)

for all r ≥ 0. We set r = vε
µ and integrate (29) on space and time to obtain that

ˆ t

0

ˆ
Ω

vε
µ(ϕ

−1(vε
µ))

p−1 dxds≤ p
ˆ t

0

ˆ
Ω

Φϕ(vε
µ)dxds,

which together with (25) completes the proof of (24).

Corollary 4.5. Suppose that (Hϕ) and (H0)(i) are satisfied. Then, there exists a constant Cv =
Cv(T )> 0 independent of ε and µ such that

0≤ vε
µ ≤Cv (30)

in Ω× [0,T ].

Proof. We remark that for all smooth enough functions f = f (t), there holds

d
dt

Φα( f ) = (α−1( f ))p−1 d f
dt

and
d
dt

Φϕ( f ) = (ϕ−1( f ))p−1 d f
dt
,

where the functions Φα and Φϕ are defined in (20). Multiplying the equations for uε
µ and vε

µ in
Problem (Pε,µ) by (α−1(uε

µ))
p−1 and (ϕ−1(vε

µ))
p−1 for p ∈ [2,∞), respectively, adding the results

and integrating in space and time yield for t > 0
ˆ

Ω

(Φα(uε
µ(t))+Φϕ(vε

µ(t)))dx+(p−1)µ
ˆ t

0

ˆ
Ω

(α−1(uε
µ))

p−2(α−1)′(uε
µ)
∣∣∇uε

µ

∣∣2 dxds

+(p−1)d
ˆ t

0

ˆ
Ω

(ϕ−1(vε
µ))

p−2(ϕ−1)′(vε
µ)
∣∣∇vε

µ

∣∣2 dxds

+
1
ε

ˆ t

0

ˆ
Ω

(
ϕ(zε

µ)− vε
µ

)(
(α−1(uε

µ))
p−1− (ϕ−1(vε

µ))
p−1
)

dxds (31)

≤
ˆ

Ω

(Φα(u0)+Φϕ(v0))dx+(1+a)
ˆ t

0

ˆ
Ω

(uε
µ(α

−1(uε
µ))

p−1 + vε
µ(ϕ

−1(vε
µ))

p−1)dxds,

where zε
µ = uε

µ + vε
µ . We used the integration by parts formula, the non-negativity of α−1(uε

µ) and
ϕ−1(vε

µ), and the estimate (11) stating that wε
µ ≤ 1 to get (31). Since p ≥ 2 and the functions α−1

12



and ϕ−1 are nonnegative and nondecreasing, the second and third integrals in (31) are nonnegative.
In view of (19) and the fact that Φα(uε

µ)≥ 0 we deduce from (31) that
ˆ

Ω

Φϕ(vε
µ(t))dx≤

ˆ
Ω

(Φα(u0)+Φϕ(v0))dx

+(1+a)
ˆ t

0

ˆ
Ω

(uε
µ(α

−1(uε
µ))

p−1 + vε
µ(ϕ

−1(vε
µ))

p−1)dxds.

Next, it follows from (22) and (24) thatˆ
Ω

Φϕ(vε
µ(t))dx≤C3 +(1+a)C4t +(1+a)p

ˆ t

0

ˆ
Ω

Φϕ(vε
µ)dxds. (32)

Gronwall’s inequality (see Lemma 4.1.2 on p. 169 in [11]) implies for t > 0 thatˆ
Ω

Φϕ(vε
µ(t))dx≤

(
C3 +

C4

p

)
ep(1+a)t , (33)

where C3 and C4 are defined by (23) and (26), respectively. In view of (21) we finally deduce that

1
p

ˆ
Ω

(vε
µ(t))

p dx≤ |Ω|
p

(
((1+a)+C̃)p +Cp−1

2 (1+a)p +Cu(α
−1(Cu))

p−1
)

ep(1+a)t .

Thus, for each t ∈ [0,T ]∥∥vε
µ(·, t)

∥∥
Lp(Ω)

≤ |Ω|1/p
(
((1+a)+C̃)p +Cp−1

2 (1+a)p +Cu(α
−1(Cu))

p−1
)1/p

e(1+a)t

≤max{1, |Ω|}e(1+a)T

(
3

∑
i=1

α
p
i

βi

) 1
p

,

where α1 = (1+a)+C̃, β1 = 1, α2 =C2(1+a), β2 =C2, α3 = α−1(Cu) and β3 = α−1(Cu)/Cu. The
constants αi and βi for i = 1,2,3 are nonnegative. Thus, we deduce that for each p≥ 2∥∥vε

µ(·, t)
∥∥

Lp(Ω)
≤max{1, |Ω|}e(1+a)T max

{
1,

3
β j

}
α j,

for some j ∈ {1,2,3}. Hence, the Lp-norm of vε
µ(·, t) is bounded uniformly in p for each p ∈ [2,∞)

and t ∈ [0,T ]. Consequently, see Theorems 3.10.7 and 3.10.8. on p. 81 in [14]1, vε
µ(·, t) ∈ L∞(Ω) for

t ∈ [0,T ]. Because of the regularity of vε
µ we conclude the proof of (30).

By repeating the proof of Corollary 4.5 for p = 2 we get important estimates of the gradients of
uε

µ and vε
µ .

Corollary 4.6. Suppose that (Hϕ) and (H0)(i) are satisfied. Then, there exists a constant C5 indepen-
dent of ε and µ such that

µ

ˆ T

0

ˆ
Ω

∣∣∇uε
µ

∣∣2 dxdt ≤C5, (34)

d
ˆ T

0

ˆ
Ω

∣∣∇vε
µ

∣∣2 dxdt ≤C5. (35)

1Theorems 3.10.7 and 3.10.8. in [14]: Let |Ω| < ∞. Let 1 ≤ p1 ≤ p2 ≤ . . . and suppose that limk→∞ pk = ∞. Let
f ∈

⋂
∞
k=1 Lpk(Ω) and a = supk∈N‖ f‖Lpk < ∞. Then f ∈ L∞(Ω) and ‖ f‖L∞(Ω) = limp→∞‖ f‖Lp(Ω).
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Proof. Since Φα(uε
µ) ≥ 0 and Φϕ(vε

µ) ≥ 0 for uε
µ ≥ 0 and vε

µ ≥ 0, respectively, it follows from (31)
for p = 2 and the estimates (19) and (22) that

µ

ˆ T

0

ˆ
Ω

(α−1)′(uε
µ)
∣∣∇uε

µ

∣∣2 dxdt +d
ˆ T

0

ˆ
Ω

(ϕ−1)′(vε
µ)
∣∣∇vε

µ

∣∣2 dxdt

≤C3 +(1+a)
ˆ T

0

ˆ
Ω

(uε
µα
−1(uε

µ)+ vε
µϕ
−1(vε

µ))dxdt.

Since α−1 and ϕ−1 are nondecreasing functions, then in view of (18) and (30) we obtain

µ

ˆ T

0

ˆ
Ω

(α−1)′(uε
µ)
∣∣∇uε

µ

∣∣2 dxdt +d
ˆ T

0

ˆ
Ω

(ϕ−1)′(vε
µ)
∣∣∇vε

µ

∣∣2 dxdt ≤C5, (36)

where C5 =C3 +(1+a)(Cuα−1(Cu)+Cvϕ−1(Cv))|Ω|T . Moreover, it follows from (Hϕ) that

(ϕ−1)′(vε
µ) =

1
ϕ ′(ϕ−1(vε

µ))
> 1. (37)

It follows also from (Hϕ) that α ′(s) = 1−ϕ ′(s)< 1 for s≥ 0. Thus,

(α−1)′(uε
µ) =

1
α ′(α−1(uε

µ))
> 1. (38)

We deduce (34) and (35) from (36)–(38).

Finally, we present a similar estimate for wε
µ .

Lemma 4.7. There exists a constant C6 independent of ε and µ such that
ˆ T

0

ˆ
Ω

∣∣∇wε
µ

∣∣2 dxdt ≤C6. (39)

Proof. Multiplying the equation for wε
µ by wε

µ and integrating in space yield

1
2

d
dt

ˆ
Ω

(wε
µ)

2 dx+
ˆ

Ω

∣∣∇wε
µ

∣∣2 +b
ˆ

Ω

(uε
µ + vε

µ)(w
ε
µ)

2 = r
ˆ

Ω

(1−wε
µ)(w

ε
µ)

2 ≤ r|Ω|,

where we used the integration by parts formula and the uniform estimate (11). Integrating this in-
equality in time, (11) and 0≤ w0 ≤ 1 in Ω implies the estimate (39) with C6 = (rT +1/2)|Ω|.

5 Relative compactness
In this section we always assume that (Hϕ) and (H0)(i)− (ii) are satisfied. The system of equation
(Pε,µ) can be written in the form

(Pε,µ)


ut = µ∆u+ f1(u,v,w)−

1
ε

F(u,v),

vt = d∆v+ f2(u,v,w)+
1
ε

F(u,v),

wt = ∆w+ f3(u,v,w),
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where we denote f1(u,v,w) = (1−u−v)u+auw, f2(u,v,w) = (1−u−v)v+avw, f3(u,v,w) = r(1−
w)w−b(u+ v)w and F(u,v) = ϕ(u+ v)− v. We recall that µ < M. In view of (Hϕ) we have

Fu(u,v) = ϕ
′(u+ v)> 0 and Fv(u,v) = ϕ

′(u+ v)−1 < 0,

in other words F(u,v) is increasing in u and decreasing in v. From the monotonicity of F we deduce
the following estimate.

Lemma 5.1. Let u, ũ,v, ṽ ∈ R. Then

(F(u,v)−F(ũ, ṽ))(sgn(u− ũ)− sgn(v− ṽ))≥ 0. (40)

Proof. Since sgn(u− ũ) = sgn(v− ṽ) for u > ũ and v > ṽ, u < ũ and v < ṽ and u = ũ and v = ṽ, the
inequality (40) is trivially satisfied. Let u > ũ and v≤ ṽ. Then sgn(u− ũ)− sgn(v− ṽ)≥ 1 and

F(u,v)−F(ũ, ṽ) = (F(u,v)−F(ũ,v))+(F(ũ,v)−F(ũ, ṽ))≥ 0,

since both terms in the brackets are nonnegative due to the monotonicity of F . The remaining case
u≤ ũ and v > ṽ can be proved analogously.

Next we prove two auxiliary lemmas.

Lemma 5.2. There exists a constant C7 such that

3

∑
i=1

( fi(u1,u2,u3)− fi(ũ1, ũ2, ũ3))sgn(ui− ũi)≤C7

3

∑
i=1
|ui− ũi| (41)

for any two triples (u1,u2,u3) and (ũ1, ũ2, ũ3) such that 0 ≤ u1, ũ1 ≤ Cu, 0 ≤ u2, ũ2 ≤ Cv and 0 ≤
u3, ũ3 ≤ 1.

Proof. The estimate (41) follows from the fact that the functions fi, i = 1, . . . ,3 are Lipschitz contin-
uous on the domain [0,Cu]× [0,Cv]× [0,1].

Lemma 5.3. There exists a constant C8 such that for every τ ∈ (0,T )
ˆ

Ω

(
∣∣uε

µ(·,τ)−u0
∣∣+ ∣∣vε

µ(·,τ)− v0
∣∣+ ∣∣wε

µ(·,τ)−w0
∣∣)dx≤C8τ (42)

where C8 is independent of τ,ε and µ .

Proof. We multiply the equation for uε
µ by sgnη(u

ε
µ − u0), where sgnη is a smooth nondecreasing

approximation of the sign function as already discussed above, and integrate in space over Ω to
obtain that
ˆ

Ω

∂ (uε
µ −u0)

∂ t
sgnη(u

ε
µ −u0)dx−µ

ˆ
Ω

∆(uε
µ −u0)sgnη(u

ε
µ −u0)dx+

1
ε

ˆ
Ω

F(uε
µ ,v

ε
µ)sgnη(u

ε
µ −u0)dx

= µ

ˆ
Ω

∆u0 sgnη(u
ε
µ −u0)dx+

ˆ
Ω

f1(uε
µ ,v

ε
µ ,w

ε
µ)sgnη(u

ε
µ −u0)dx

15



where we used ∂tuε
µ = ∂t(uε

µ −u0). Similarly we multiply the equation for vε
µ by sgnη(v

ε
µ − v0) and

integrate over Ω to obtain
ˆ

Ω

∂ (vε
µ − v0)

∂ t
sgnη(v

ε
µ − v0)dx−d

ˆ
Ω

∆(vε
µ − v0)sgnη(v

ε
µ − v0)dx− 1

ε

ˆ
Ω

F(uε
µ ,v

ε
µ)sgnη(v

ε
µ − v0)dx

= d
ˆ

Ω

∆v0 sgnη(v
ε
µ − v0)dx+

ˆ
Ω

f2(uε
µ ,v

ε
µ ,w

ε
µ)sgnη(v

ε
µ − v0)dx.

Finally, we multiply the equation for wε
µ by sgnη(w

ε
µ −w0) and integrate over Ω to obtain

ˆ
Ω

∂ (wε
µ −w0)

∂ t
sgnη(w

ε
µ −w0)dx−

ˆ
Ω

∆(wε
µ −w0)sgnη(w

ε
µ −w0)dx

=

ˆ
Ω

∆w0 sgnη(w
ε
µ −w0)dx+

ˆ
Ω

f3(uε
µ ,v

ε
µ ,w

ε
µ)sgnη(w

ε
µ −w0)dx.

Integration by parts yields

−µ

ˆ
Ω

∆(uε
µ −u0)sgnη(u

ε
µ −u0)dx = µ

ˆ
Ω

∣∣∇(uε
µ −u0)

∣∣2 sgn′η(u
ε
µ −u0)dx, (43)

−d
ˆ

Ω

∆(vε
µ − v0)sgnη(v

ε
µ − v0)dx = d

ˆ
Ω

∣∣∇(vε
µ − v0)

∣∣2 sgn′η(v
ε
µ − v0)dx (44)

and
−
ˆ

Ω

∆(wε
µ −w0)sgnη(w

ε
µ −w0)dx =

ˆ
Ω

∣∣∇(wε
µ −w0)

∣∣2 sgn′η(w
ε
µ −w0)dx. (45)

Since sgnη is a nondecreasing function, the integrals (43)–(45) are nonnegative. In view of the
assumption that u0,v0,w0 ∈W 2,1(Ω) and since µ < M, there exists a constant C1 > 0 independent of
ε and µ such that

µ

ˆ
Ω

∆u0 sgnη(u
ε
µ −u0)dx≤ µ‖∆u0‖L1(Ω) ≤C1,

d
ˆ

Ω

∆v0 sgnη(v
ε
µ − v0)dx≤ d‖∆v0‖L1(Ω) ≤C1

and ˆ
Ω

∆w0 sgnη(w
ε
µ −w0)dx≤ ‖∆w0‖L1(Ω) ≤C1.

Moreover, in view of the L∞ estimates (11), (18) and (30) we deduce that there exists a constant C9 > 0
independent of ε and µ such thatˆ

Ω

f1(uε
µ ,v

ε
µ ,w

ε
µ)sgnη(u

ε
µ −u0)dx≤C9,

ˆ
Ω

f2(uε
µ ,v

ε
µ ,w

ε
µ)sgnη(v

ε
µ − v0)dx≤C9

and ˆ
Ω

f3(uε
µ ,v

ε
µ ,w

ε
µ)sgnη(w

ε
µ −w0)dx≤C9.

Thus, we deduce from the previous estimates that
ˆ

Ω

∂ (uε
µ −u0)

∂ t
sgnη(u

ε
µ −u0)dx+

1
ε

ˆ
Ω

F(uε
µ ,v

ε
µ)sgnη(u

ε
µ −u0)dx≤C1 +C9,
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ˆ
Ω

∂ (vε
µ − v0)

∂ t
sgnη(v

ε
µ − v0)dx− 1

ε

ˆ
Ω

F(uε
µ ,v

ε
µ)sgnη(v

ε
µ − v0)dx≤C1 +C9

and ˆ
Ω

∂ (wε
µ −w0)

∂ t
sgnη(w

ε
µ −w0)dx≤C1 +C9.

Lebesgue’s dominated convergence theorem yields in the limit η → 0 that
ˆ

Ω

∂ (uε
µ −u0)

∂ t
sgn(uε

µ −u0)dx+
ˆ

Ω

∂ (vε
µ − v0)

∂ t
sgn(vε

µ − v0)dx+
ˆ

Ω

∂ (wε
µ −w0)

∂ t
sgn(wε

µ −w0)dx

+
1
ε

ˆ
Ω

F(uε
µ ,v

ε
µ)(sgn(uε

µ −u0)− sgn(vε
µ − v0))dx≤ 3(C1 +C9).

Thus,

d
dt

ˆ
Ω

(
∣∣uε

µ −u0
∣∣+ ∣∣vε

µ − v0
∣∣+ ∣∣wε

µ −w0
∣∣)dx+

1
ε

ˆ
Ω

F(uε
µ ,v

ε
µ)(sgn(uε

µ −u0)− sgn(vε
µ − v0))dx

≤ 3(C1 +C9).

Since F(u0,v0) = 0 by the assumption (H0)(ii), then by using Lemma 5.1 we obtain

F(uε
µ ,v

ε
µ)(sgn(uε

µ−u0)− sgn(vε
µ−v0))= (F(uε

µ ,v
ε
µ)−F(u0,v0))(sgn(uε

µ−u0)− sgn(vε
µ−v0))≥ 0,

which implies that

d
dt

ˆ
Ω

(
∣∣uε

µ −u0
∣∣+ ∣∣vε

µ − vε
0
∣∣+ ∣∣wε

µ −w0
∣∣)dx≤ 3(C1 +C9). (46)

Integrating (46) in time t over (0,τ) implies (42) for C8 = 3(C1 +C9).

Now we prove that the time translates of uε
µ ,v

ε
µ and wε

µ are bounded in the L1 norm uniformly in
the translation parameter τ .

Lemma 5.4. There exists a constant C10 such that for every τ ∈ (0,T )
ˆ T−τ

0

ˆ
Ω

∣∣uε
µ(x, t + τ)−uε

µ(x, t)
∣∣dxdt +

ˆ T−τ

0

ˆ
Ω

∣∣vε
µ(x, t + τ)− vε

µ(x, t)
∣∣dxdt

+

ˆ T−τ

0

ˆ
Ω

∣∣wε
µ(x, t + τ)−wε

µ(x, t)
∣∣dxdt ≤C10τ

(47)

where C10 is independent of τ,ε and µ .

Proof. Let uτ(x, t) = uε
µ(x, t + τ), vτ(x, t) = vε

µ(x, t + τ) and wτ(x, t) = wε
µ(x, t + τ) and let u(x, t) =

uε
µ(x, t), v(x, t) = vε

µ(x, t) and w(x, t) = wε
µ(x, t). Multiplying the equation for uτ −u by sgnη(uτ −u)

and integrating over Ω yield
ˆ

Ω

∂ (uτ −u)
∂ t

sgnη(uτ −u)dx−µ

ˆ
Ω

∆(uτ −u)sgnη(uτ −u)dx

+
1
ε

ˆ
Ω

(F(uτ ,vτ)−F(u,v))sgnη(uτ −u)dx =
ˆ

Ω

( f1(uτ ,vτ ,wτ)− f1(u,v,w))sgnη(uτ −u)dx.
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Similarly, by multiplying the equation for vτ − v by sgnη(vτ − v) and integrating over Ω we obtain

ˆ
Ω

∂ (vτ − v)
∂ t

sgnη(vτ − v)dx−d
ˆ

Ω

∆(vτ − v)sgnη(vτ − v)dx

−1
ε

ˆ
Ω

(F(uτ ,vτ)−F(u,v))sgnη(vτ − v)dx =
ˆ

Ω

( f2(uτ ,vτ ,wτ)− f2(u,v,w))sgnη(vτ − v)dx.

Finally, by multiplying the equation for wτ −w by sgnη(wτ −w) and integrating over Ω we obtain

ˆ
Ω

∂ (wτ −w)
∂ t

sgnη(wτ −w)dx−
ˆ

Ω

∆(wτ −w)sgnη(wτ −w)dx

=

ˆ
Ω

( f3(uτ ,vτ ,wτ)− f3(u,v,w))sgnη(wτ −w)dx.

As in the proof of Lemma 5.3, integration by parts yields that

−µ

ˆ
Ω

∆(uτ −u)sgnη(uτ −u)dx = µ

ˆ
Ω

|∇(uτ −u)|2 sgn′η(uτ −u)dx≥ 0,

−d
ˆ

Ω

∆(vτ − v)sgnη(vτ − v)dx = d
ˆ

Ω

|∇(vτ − v)|2 sgn′η(vτ − v)dx≥ 0

and
−
ˆ

Ω

∆(wτ −w)sgnη(wτ −w)dx =
ˆ

Ω

|∇(wτ −w)|2 sgn′η(wτ −w)dx≥ 0.

By using Lebesgue’s dominated convergence theorem we obtain that, as η → 0,
ˆ

Ω

∂ (uτ −u)
∂ t

sgn(uτ −u)dx+
ˆ

Ω

∂ (vτ − v)
∂ t

sgn(vτ − v)dx+
ˆ

Ω

∂ (wτ −w)
∂ t

sgn(wτ −w)dx

+
1
ε

ˆ
Ω

(F(uτ ,vτ)−F(u,v))(sgn(uτ −u)− sgn(vτ − v))dx

≤
ˆ

Ω

{( f1(uτ ,vτ ,wτ)− f1(u,v,w))sgn(uτ −u)+( f2(uτ ,vτ ,wτ)− f2(u,v,w))sgn(vτ − v)

+( f3(uτ ,vτ ,wτ)− f3(u,v,w))sgn(wτ −w)} dx,

where we used (F(uτ ,vτ)−F(u,v))(sgn(uτ −u)− sgn(vτ −v))≥ 0. In view of Lemmas 5.1 and 5.2
we deduce that

d
dt

ˆ
Ω

(|uτ −u|+ |vτ − v|+ |wτ −w|)dx≤C7

ˆ
Ω

(|uτ −u|+ |vτ − v|+ |wτ −w|)dx.

Gronwall’s inequality and (42) imply
ˆ

Ω

(|uτ(t)−u(t)|+ |vτ(t)− v(t)|+ |wτ(t)−w(t)|)dx

≤
(ˆ

Ω

(|uτ(0)−u(0)|+ |vτ(0)− v(0)|+ |wτ(0)−w(0)|)dx
)

eC7t

≤C8eC7T
τ. (48)
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Finally, we integrate the last inequality over (0,T − τ) to obtain that
ˆ T−τ

0

ˆ
Ω

(|uτ(t)−u(t)|+ |vτ(t)− v(t)|+ |wτ(t)−w(t)|)dxdt ≤C10τ,

where C10 =C8TeC7T .

We prove that the space translates of uε
µ ,v

ε
µ and wε

µ are bounded in the L1 norm uniformly in the
translation parameter ξ . We need the following lemma.

Lemma 5.5. For each r ∈ (0, r̂) and r̂ > 0 sufficiently small it holds that

µ

ˆ T

0

ˆ
Ω′r

(uε
µ(x+ξ , t)−uε

µ(x, t))
2 dxdt ≤C5|ξ |2, (49)

d
ˆ T

0

ˆ
Ω′r

(vε
µ(x+ξ , t)− vε

µ(x, t))
2 dxdt ≤C5|ξ |2, (50)

ˆ T

0

ˆ
Ω′r

(wε
µ(x+ξ , t)−wε

µ(x, t))
2 dxdt ≤C6|ξ |2 (51)

for all ξ ∈RN such that |ξ | ≤ r where the constants C5 and C6 are from Corollary 4.6 and Lemma 4.7,
respectively.

Proof. By direct calculations we get

µ

ˆ T

0

ˆ
Ω′r

(uε
µ(x+ξ , t)−uε

µ(x, t))
2 dxdt = µ

ˆ T

0

ˆ
Ω′r

(ˆ 1

0

∂

∂θ
uε

µ(x+θξ , t)dθ

)2

dxdt

= µ

ˆ T

0

ˆ
Ω′r

(ˆ 1

0
∇uε

µ(x+θξ , t) ·ξ dθ

)2

dxdt

≤ µ|ξ |2
ˆ 1

0

ˆ T

0

ˆ
Ω′r

∣∣∇uε
µ(x+θξ , t)

∣∣2 dxdt dθ

≤ µ|ξ |2
ˆ T

0

ˆ
Ω

∣∣∇uε
µ(x, t)

∣∣2 dxdt

≤C5|ξ |2

due to the Hölder inequality and (34). Analogously we prove (50) and (51).

Lemma 5.6. For each r ∈ (0, r̂) and r̂ > 0 sufficiently small, there exists a positive function ρ(ξ ) such
that ρ(ξ )→ 0 uniformly in ε and µ as |ξ | → 0 and

ˆ T

0

ˆ
Ωr

∣∣uε
µ(x+ξ , t)−uε

µ(x, t)
∣∣dxdt +

ˆ T

0

ˆ
Ωr

∣∣vε
µ(x+ξ , t)− vε

µ(x, t)
∣∣dxdt

+

ˆ T

0

ˆ
Ωr

∣∣wε
µ(x+ξ , t)−wε

µ(x, t)
∣∣dxdt ≤ ρ(ξ )

(52)

for all ξ ∈ RN such that |ξ | ≤ r.
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Proof. Let uξ = uε
µ(x+ξ , t),vξ = vε

µ(x+ξ , t) and wξ = wε
µ(x+ξ , t) and let u = uε

µ(x, t),v = vε
µ(x, t)

and w = wε
µ(x, t). We start by multiplying the equation for uξ − u by sgnη(uξ − u)ψ , where ψ is

defined by (16), and integrating over Ω′r× (0, t) to obtain

ˆ t

0

ˆ
Ω′r

∂ (uξ −u)
∂ t

sgnη(uξ −u)ψ dxds+
1
ε

ˆ t

0

ˆ
Ω′r

(F(uξ ,vξ )−F(u,v))sgnη(uξ −u)ψ dxds

= µ

ˆ t

0

ˆ
Ω′r

∆(uξ −u)sgnη(uξ −u)ψ dxds+
ˆ t

0

ˆ
Ω′r

( f1(uξ ,vξ ,wξ )− f1(u,v,w))sgnη(uξ −u)ψ dxds.

Similarly, we deduce from the equations for vξ − v and wξ −w that

ˆ t

0

ˆ
Ω′r

∂ (vξ − v)
∂ t

sgnη(vξ − v)ψ dxds− 1
ε

ˆ t

0

ˆ
Ω′r

(F(uξ ,vξ )−F(u,v))sgnη(vξ − v)ψ dxds

= d
ˆ t

0

ˆ
Ω′r

∆(vξ − v)sgnη(vξ − v)ψ dxds+
ˆ t

0

ˆ
Ω′r

( f2(uξ ,vξ ,wξ )− f2(u,v,w))sgnη(vξ − v)ψ dxds

and
ˆ t

0

ˆ
Ω′r

∂ (wξ −w)
∂ t

sgnη(wξ −w)ψ dxds =
ˆ t

0

ˆ
Ω′r

∆(wξ −w)sgnη(wξ −w)ψ dxds

+

ˆ t

0

ˆ
Ω′r

( f3(uξ ,vξ ,wξ )− f3(u,v,w))sgnη(wξ −w)ψ dxds.

The integrals with Laplacians can be further handled by the integration by parts formula. Thus, for
example,

µ

ˆ t

0

ˆ
Ω′r

∆(uξ −u)sgnη(uξ −u)ψ dxds

=−µ

ˆ t

0

ˆ
Ω′r

∇(uξ −u) ·∇(sgnη(uξ −u)ψ)dxds

=−µ

ˆ t

0

ˆ
Ω′r

∣∣∇(uξ −u)
∣∣2 sgn′η(uξ −u)ψ dxds−µ

ˆ t

0

ˆ
Ω′r

sgnη(uξ −u)∇(uξ −u) ·∇ψ dxds

≤−µ

ˆ t

0

ˆ
Ω′r

sgnη(uξ −u)∇(uξ −u) ·∇ψ dxds

where the boundary integral is equal to zero due to vanishing ψ at the boundary of Ω′r and the in-
equality follows from the fact that the first integral on the third line is nonnegative. Similarly, we
obtain

d
ˆ t

0

ˆ
Ω′r

∆(vξ − v)sgnη(vξ − v)ψ dxds≤−d
ˆ t

0

ˆ
Ω′r

sgnη(vξ − v)∇(vξ − v) ·∇ψ dxds,

ˆ t

0

ˆ
Ω′r

∆(wξ −w)sgnη(wξ −w)ψ dxds≤−
ˆ t

0

ˆ
Ω′r

sgnη(wξ −w)∇(wξ −w) ·∇ψ dxds.
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Next we apply Lebesgue’s dominated convergence theorem to deduce from the equation for uξ − u
that ˆ t

0

ˆ
Ω′r

∂ (uξ −u)
∂ t

sgn(uξ −u)ψ dxds+
1
ε

ˆ t

0

ˆ
Ω′r

(F(uξ ,vξ )−F(u,v))sgn(uξ −u)ψ dxds

≤−µ

ˆ t

0

ˆ
Ω′r

sgn(uξ −u)∇(uξ −u) ·∇ψ dxds

+

ˆ t

0

ˆ
Ω′r

( f1(uξ ,vξ ,wξ )− f1(u,v,w))sgn(uξ −u)ψ dxds,

from the equation for vξ − v that
ˆ t

0

ˆ
Ω′r

∂ (vξ − v)
∂ t

sgn(vξ − v)ψ dxds− 1
ε

ˆ t

0

ˆ
Ω′r

(F(uξ ,vξ )−F(u,v))sgn(vξ − v)ψ dxds

≤−d
ˆ t

0

ˆ
Ω′r

sgn(vξ − v)∇(vξ − v) ·∇ψ dxds

+

ˆ t

0

ˆ
Ω′r

( f2(uξ ,vξ ,wξ )− f2(u,v,w))sgn(vξ − v)ψ dxds

and from the equation for wξ −w that
ˆ t

0

ˆ
Ω′r

∂ (wξ −w)
∂ t

sgn(wξ −w)ψ dxds≤−
ˆ t

0

ˆ
Ω′r

sgn(wξ −w)∇(wξ −w) ·∇ψ dxds

+

ˆ t

0

ˆ
Ω′r

( f3(uξ ,vξ ,wξ )− f3(u,v,w))sgn(wξ −w)ψ dxds.

The integration by parts formula, the Hölder inequality and (49) imply that

−µ

ˆ t

0

ˆ
Ω′r

sgn(uξ −u)∇(uξ −u) ·∇ψ dxds =−µ

ˆ t

0

ˆ
Ω′r

∇
∣∣uξ −u

∣∣ ·∇ψ dxds

= µ

ˆ t

0

ˆ
Ω′r

∣∣uξ −u
∣∣∆ψ dxds≤ µ

√
T
∥∥uξ −u

∥∥
L2(Ω′r×(0,T ))

‖∆ψ‖L2(Ω′r)
≤
√

µTC5‖∆ψ‖L2(Ω′r)
|ξ |.

Moreover, since µ < M, then

−µ

ˆ t

0

ˆ
Ω′r

sgn(uξ −u)∇(uξ −u) ·∇ψ dxds <
√

MTC5‖∆ψ‖L2(Ω′r)
|ξ |.

In view of (50) and (51) we deduce in a similar way that

−d
ˆ t

0

ˆ
Ω′r

sgn(vξ − v)∇(vξ − v) ·∇ψ dxds≤
√

dTC5‖∆ψ‖L2(Ω′r)
|ξ |

and

−
ˆ t

0

ˆ
Ω′r

sgn(wξ −w)∇(wξ −w) ·∇ψ dxds≤
√

TC6‖∆ψ‖L2(Ω′r)
|ξ |.
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Next we set C11 =
√

MTC5‖∆ψ‖L2(Ω′r)
, C12 =

√
dTC5‖∆ψ‖L2(Ω′r)

and C13 =
√

TC6‖∆ψ‖L2(Ω′r)
. Thus,

ˆ t

0

ˆ
Ω′r

∂ (uξ −u)
∂ t

sgn(uξ −u)ψ dxds+
1
ε

ˆ t

0

ˆ
Ω′r

(F(uξ ,vξ )−F(u,v))sgn(uξ −u)ψ dxds

≤C11|ξ |+
ˆ t

0

ˆ
Ω′r

( f1(uξ ,vξ ,wξ )− f1(u,v,w))sgn(uξ −u)ψ dxds,
(53)

as well as
ˆ t

0

ˆ
Ω′r

∂ (vξ − v)
∂ t

sgn(vξ − v)ψ dxds− 1
ε

ˆ t

0

ˆ
Ω′r

(F(uξ ,vξ )−F(u,v))sgn(vξ − v)ψ dxds

≤C12|ξ |+
ˆ t

0

ˆ
Ω′r

( f2(uξ ,vξ ,wξ )− f2(u,v,w))sgn(vξ − v)ψ dxds
(54)

and ˆ t

0

ˆ
Ω′r

∂ (wξ −w)
∂ t

sgn(wξ −w)ψ dxds≤C13|ξ |

+

ˆ t

0

ˆ
Ω′r

( f3(uξ ,vξ ,wξ )− f3(u,v,w))sgn(wξ −w)ψ dxds.
(55)

In view of Lemmas 5.1 and 5.2, summing up (53)–(55) yields
ˆ t

0

ˆ
Ω′r

∂

∂ t

(∣∣uξ −u
∣∣+ ∣∣vξ − v

∣∣+ ∣∣wξ −w
∣∣)ψ dxds≤ (C11 +C12 +C13)|ξ |

+C7

ˆ t

0

ˆ
Ω′r

(∣∣uξ −u
∣∣+ ∣∣vξ − v

∣∣+ ∣∣wξ −w
∣∣)ψ dxds.

(56)

Moreover, the uniform continuity of the initial data u0,v0 and w0 in Ω′r implies that there exists a
positive function ω such that ω(ξ )→ 0 as |ξ | → 0 and

ˆ
Ω′r

(|u0(x+ξ )−u0(x)|+ |v0(x+ξ )− v0(x)|+ |w0(x+ξ )−w0(x)|)ψ dx≤ ω(ξ ).

Thus, we obtain from (56) that
ˆ

Ω′r

(∣∣uξ (t)−u(t)
∣∣+ ∣∣vξ (t)− v(t)

∣∣+ ∣∣wξ (t)−w(t)
∣∣)ψ dx≤ ω(ξ )+(C11 +C12 +C13)|ξ |

+C7

ˆ t

0

ˆ
Ω′r

(∣∣uξ (s)−u(s)
∣∣+ ∣∣vξ (s)− v(s)

∣∣+ ∣∣wξ (s)−w(s)
∣∣)ψ dxds.

Finally, we deduce from Gronwall’s inequality that
ˆ

Ω′r

(∣∣uξ (t)−u(t)
∣∣+ ∣∣vξ (t)− v(t)

∣∣+ ∣∣wξ (t)−w(t)
∣∣)ψ dx≤ (ω(ξ )+(C11 +C12 +C13)|ξ |)eC7T .

(57)
Since 0 ≤ ψ ≤ 1 in Ω′r, ψ = 1 in Ωr and Ωr ⊂ Ω′r, we obtain (52) by integrating (57) in time over
(0,T ) and setting ρ(ξ ) = (ω(ξ )+(C11 +C12 +C13)|ξ |)TeC7T .
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In view of the uniform L∞ estimates (11), (18) and (30) we can use (47) and (52) to show that the
time and space translates converge to zero uniformly in ε and µ as the translation parameters tend to
zero in the Lp norm for any p ∈ [2,∞).

Corollary 5.7. Let p ∈ [2,∞). a) There exists a constant C14 such that for every τ ∈ (0,T )

ˆ T−τ

0

ˆ
Ω

∣∣uε
µ(x, t + τ)−uε

µ(x, t)
∣∣p dxdt +

ˆ T−τ

0

ˆ
Ω

∣∣vε
µ(x, t + τ)− vε

µ(x, t)
∣∣p dxdt

+

ˆ T−τ

0

ˆ
Ω

∣∣wε
µ(x, t + τ)−wε

µ(x, t)
∣∣p dxdt ≤C14τ,

(58)

where C14 depends on p but not on τ,ε and µ .
b) For each r ∈ (0, r̂) and r̂ > 0 sufficiently small, there exists a positive function ρ̃(ξ ) such that

ρ̃(ξ )→ 0 uniformly in ε and µ as |ξ | → 0 and

ˆ T

0

ˆ
Ωr

∣∣uε
µ(x+ξ , t)−uε

µ(x, t)
∣∣p dxdt +

ˆ T

0

ˆ
Ωr

∣∣vε
µ(x+ξ , t)− vε

µ(x, t)
∣∣p dxdt

+

ˆ T

0

ˆ
Ωr

∣∣wε
µ(x+ξ , t)−wε

µ(x, t)
∣∣p dxdt ≤ ρ̃(ξ )

(59)

for all ξ ∈ RN such that |ξ | ≤ r.

Proof. It follows from the uniform L∞ estimate (18) that
ˆ T−τ

0

ˆ
Ω

∣∣uε
µ(x, t + τ)−uε

µ(x, t)
∣∣p dxdt

=

ˆ T−τ

0

ˆ
Ω

∣∣uε
µ(x, t + τ)−uε

µ(x, t)
∣∣p−1∣∣uε

µ(x, t + τ)−uε
µ(x, t)

∣∣dxdt

≤ (2Cu)
p−1
ˆ T−τ

0

ˆ
Ω

∣∣uε
µ(x, t + τ)−uε

µ(x, t)
∣∣dxdt.

In view of (47) we obtain the first part of (58). Analogously we estimate the remaining integrals.

Corollary 5.8. The sequences {uε
µ}, {vε

µ} and {wε
µ} are relatively compact in Lp(QT ) for p ∈ [1,∞).

Proof. The estimates (58) and (59) imply that the differences of space and time translates of uε
µ ,v

ε
µ

and wε
µ tend to zero uniformly in ε and µ in the Lp topology as the translation parameters tend to

zero.
Moreover, in view of (18) we have that

ˆ T

T−τ

ˆ
Ω

(uε
µ(x, t))

p dxdt ≤Cp
u |Ω|τ and

ˆ T

0

ˆ
Ω\Ωr

(uε
µ(x, t))

p dxdt ≤Cp
u T S2(r), (60)

where S2(r) =
´

Ω\Ωr
1dx, and similar estimates hold for vε

µ and wε
µ . The Fréchet-Kolmogorov the-

orem 3.1 applied to {uε
µ}, {vε

µ} and {wε
µ} yields that these sequences are relatively compact in

Lp(QT ).
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6 Proof of main theorems
In this section we complete the proof of Theorems 2.3 and 2.4.

As in [7], it follows from Corollary 5.8 and the uniform L∞-boundedness of the sequences {uε
µ},

{vε
µ} and {wε

µ} that there exist subsequences {uε
µk
}µk>0, {vε

µk
}µk>0 and {wε

µk
}µk>0 and functions

uε ,vε ,wε ∈ L∞(QT ) such that for p ∈ [1,∞)

uε
µk
→ uε , vε

µk
→ vε , wε

µk
→ wε strongly in Lp(QT ) and a.e. in QT

as µk→ 0. The sequences {uε}, {vε} and {wε} are relatively compact in Lp(QT ) for each p ∈ [1,∞),
as well as uniformly bounded in L∞(QT ). Indeed, the relative compactness of the sequences {uε},
{vε} and {wε} follows from Corollary 5.8 and a remark that all the estimates on space and time
translates in Section 4 are uniform in ε . Moreover, the functions uε ,vε and wε are a unique weak
solution of Problem (Pε) in the sense that they satisfy (12)–(15).

Proof of Theorem 2.3: Corollary 5.8 and the uniform boundedness of the sequences {uε}ε>0, {vε}ε>0
and {wε}ε>0 imply that there exist subsequences {uεk}εk>0, {vεk}εk>0 and {wεk}εk>0 and functions
u,v,w ∈ L∞(QT ) such that (6) is satisfied. This completes the proof.

We next go to the proof of Theorem 2.4. Let us denote

zεk = uεk + vεk and z = u+ v.

We deduce from Theorem 2.3 that for p ∈ [1,∞)

zεk → z strongly in Lp(QT ) and a.e. in QT

as εk→ 0.

Proof of Theorem 2.4: Since ϕ is Lipschitz continuous then the convergence (7) implies that ϕ(zεk)→
ϕ(z) strongly in Lp(QT ) for p ∈ [1,∞) and a.e. in QT as εk → 0. By taking ξ = εkζ in (14) for
ζ ∈C2,1(QT ) and passing to the limit εk→ 0 we deduce that

¨
QT

(ϕ(z)− v)ζ dxdt = 0

for all ζ ∈C2,1(QT ). Thus, v = ϕ(z) a.e. in QT . We deduce from (13) and (14) that zεk satisfies

−
ˆ

Ω

z0ξ (0)dx =
¨

QT

(dvεk ∆ξ +((1− zεk)zεk +azεkwεk)ξ + zεkξt) dxdt, (61)

where z0 = u0+v0 and ξ ∈C2,1(QT ) is such that ξ (x,T ) = 0 in Ω and ∂νξ = 0 on ∂Ω× [0,T ]. Thus,
in view of (6), (7) and the identity v = ϕ(z) a.e. in QT we deduce (8) and (9) from (61) and (15)
respectively, as εk→ 0.

It remains to show that z,w ∈C([0,T ];L1(Ω)). In the view of (48), taking µk→ 0 and εk→ 0 the
continuity immediately follows from the Arzela-Ascoli Theorem. Since the uniqueness of the weak
solution of Problem (P) was proved in [6], the proof is complete.
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