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Abstract
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1 Introduction
The Neolithic migration of farmers in regions previously inhabited by hunter-gatherers has been
studied for a long time [1, 2]. In particular the Lotka-Volterra type system{

Ft = dF∆F + rFF(1−F +aH),

Ht = dH∆H + rHH(1−H−bF),
(1)

has been studied by [3]. In this model, the populations of farmers F and hunter-gatherers H are
assumed to diffuse freely and randomly by linear diffusion with constant diffusion rates dF and
dH throughout the region. Recently, Eliaš, Kabir and Mimura [15] have proposed a new three
component reaction-diffusion system

(Pk)


F1,t = F1(1−F1−F2)+ sF1H− k (p(F1 +F2)F1− (1− p(F1 +F2))F2) ,

F2,t = d∆F2 +F2(1−F1−F2)+ sF2H + k (p(F1 +F2)F1− (1− p(F1 +F2))F2) ,

Ht = ∆H + rH(1−H)−g(F1 +F2)H,

allowing to monitor the expanding farming population in terms of the sedentary and migrating
farmers denoted by F1 and F2, respectively. In Problem (Pk), p = p(F) is the probability density
function which is included in the switching mechanism between the sedentary and migrating farmers
and which depends on the total density of the farmers F = F1 +F2. We assume that p satisfies

(i) p(0) = 0,
(ii) p(F) is increasing in F,
(iii) lim

F→∞
p(F) = 1.

A simple example is given by p(F) = F/(F +Fc), where Fc is the switching value of the conversion
between F1 and F2; more precisely, the probabilities of remaining sedentary or migrating are both
equal to 1/2 when F = Fc. Finally the parameter k > 0 is the rate of conversion between F1 and F2.
In view of (i)-(iii), the model (Pk) implies that whenever the total density of farmers is low, the
farmers prefer a sedentary lifestyle. On the other hand, if the total density of farmers is high, then
some of the farmers start migrating and searching for new places favourable for sedentary life.

In this paper, we consider the special case when the rate of conversion k in Problem (Pk) tends
to ∞. Formal calculations show and we will prove in a forthcoming article [14] that (Fk,1+Fk,2,Hk)
converges to (F,H) as k→ ∞, where the triple (Fk,1,Fk,2,Hk) satisfies Problem (Pk) and (F,H) is
a solution of the system {

Ft = dF∆(p(F)F)+ rFF(1−F)+ sFH,

Ht = dH∆H + rHH(1−H)−gFH.
(2)

Unlike in the system (1), the diffusion of farmers may degenerate if p = 0 in (cf. assumption (i)). In
this model, the Neolithic dispersal of farming in Europe takes into account the population density
pressure due to limited space and the advanced lifestyle resulting in farmer overcrowding.
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More precisely, we study the nondimensionalised model

(P)



ut = du∆ϕ(u)+ ruu(1−u+av) in QT ,

vt = dv∆v+ rvv(1− v−bu) in QT ,

∂ϕ(u)
∂ν

=
∂v
∂ν

= 0 on ΣT ,

u(x,0) = u0(x), v(x,0) = v0(x), x ∈Ω,

where the dispersal of the hunting-gathering population v is assumed to be linear and the dispersal of
the farming population u is modelled by using a possibly degenerate diffusion ϕ where ϕ :R+→R+

satisfies

(Hϕ)
ϕ ∈C3(R+)∩C1(R+), ϕ(0) = ϕ

′(0) = 0, ϕ
′(s)> 0 for s > 0 and

ϕ
′′(s)≥ 0 for s ∈ [0,2Ca],

where Ca = 1+a. We assume that u and v are defined on an open bounded domain Ω⊂ Rd with a
smooth boundary and that the initial functions u0,v0 ∈C(Ω) satisfy 0≤ u0≤Ca and 0≤ v0≤ 1. For
T > 0 we use the notation QT = Ω× (0,T ), ΣT = ∂Ω× (0,T ) and ν denotes the outward normal
at x ∈ ∂Ω. In the model (P), hunters are converted to farmers with the conversion rates a and b; ru
and rv are the intrinsic per-capita growth rates and the carrying capacities of the habitat for farmers
and hunter-gatherers are rescaled to 1. All the rates including the diffusion constants du and dv are
assumed to be positive constants. The system (2) is a special case of Problem (P).

In this paper we prove the global in time existence and uniqueness of the solution of Problem
(P) and we study the large time behaviour of the solution as t → ∞. In particular, depending on
the value of b, we show that both farmers and hunters can coexist (0 < b < 1) or that hunters can
become extinct (b ≥ 1); in any case the population densities converge to constant steady states so
that the populations homogeneously spread over the space domain.

Our main result is to prove that the convergence to equilibrium is exponential in the Lp topology
for all p≥ 1. In other words we show that the constant equilibria of Problem (P) are exponentially
asymptotically stable in Lp for all p ≥ 1 and we provide some explicit estimates for the conver-
gence rates and constants. The method that we apply is inspired from the so-called entropy method,
which measures the distance between the solution and the stationary state by means of a suitable,
monotone in time Lyapunov (entropy or free energy) functional of the system. The idea is to es-
tablish functional inequalities between this Lyapunov functional, say, V , and the associated dissipa-
tion functional dV/dt. The entropy method has mainly been developed in the framework of scalar
diffusion equations and the kinetic theory of the spatially homogeneous Boltzmann equation, see
[4, 7, 23] and references therein. The method has also been used to obtain explicit rates for the expo-
nential decay to equilibrium in the case of reaction-diffusion systems modelling reversible chemical
reactions such as 2A1 
 A2, A1 +A2 
 A3, A1 +A2 
 A3 +A4 and A1 +A2 
 A3 
 A1 +A4 in
[8, 9, 10, 16, 13]. The usual entropy functional used in the case of reversible reactions has the form

V (a1,a2, . . .) = ∑
i

ˆ
Ω

(ai logai−ai +1)dx (3)

where ai is the molar concentration of the chemical Ai and the summation goes through all the
species of the reaction under consideration.
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For Problem (P), if 0 < b < 1, let (u∗,v∗) be a strictly positive spatially homogeneous steady
state solution of Problem (P). The Lyapunov functional, which we will use, is given by

V (u,v) = α

ˆ
Ω

(
u−u∗−u∗ log

u
u∗

)
dx+β

ˆ
Ω

(
v− v∗− v∗ log

v
v∗

)
dx. (4)

In contrast, if b≥ 1, a steady state solution of Problem (P) is given by (1,0) and the functional

V (u,v) = α

ˆ
Ω

(u−1− logu) dx+β

ˆ
Ω

vdx (5)

is a Lyapunov functional of Problem (P).
There is an essential difference between the functionals (3) and (4), (5). In particular the func-

tional (3) is well defined even if one or more species vanishes. On the other hand the functionals (4)
and (5) blow up whenever u and/or v are not strictly positive in Ω. As it is expected for u to be zero
in a part of the domain due to the finite time propagation property of solutions of porous medium
equations starting from compactly supported initial data, we first need to show the eventual positiv-
ity of the solution (u,v) of Problem (P) everywhere in Ω, which makes our approach different from
the previous studies about reversible chemical reactions. The eventual positivity will be deduced
from the uniform convergence of the solution (u,v) of Problem (P) to the equilibrium in (C(Ω))2.
Indeed, having this uniform convergence, we can find a time, say tµ > 0, after which u and v are
bounded below by a suitably small positive constant whenever the corresponding equilibrium is also
strictly positive. For all the times t ≥ tµ , the desired functional inequality between the Lyapunov
functional and its time derivative has the form of dV/dt ≤−CV for some positive constant C, which
immediately implies the exponential convergence of the functional V (u(t),v(t)) to its steady state
as t → ∞. Then a Pinsker’s-type inequality allows to find a lower bound for V in the sense of the
L2 distance between u and u∗ and v and v∗, respectively, which in turn implies the exponential con-
vergence of the solution orbits towards their steady state. This method works out in the cases that
0 < b < 1 and b > 1. If b = 1, we can only prove an inequality of the form dV/dt ≤−CV 2, which
then yields an algebraic convergence result.

The paper is organised as follows. In Section 2, we prove the existence and uniqueness of the
solution of the degenerate parabolic problem P in the sense of Definition 2.1. Then, we will study
the asymptotic behaviour of the solution of Problem P as time tends to infinity in Section 3. For
the sake of completeness, Section 3 is concluded with remarks on the stabilisation for large time
of a uniformly parabolic problem which corresponds to Problem P . Namely, we will assume in
Subsection 3.4 that ϕ : R+→ R+ satisfies

(H̃ϕ) ϕ ∈C2(R+) and ϕ
′(s)> 0 for s≥ 0

and that u0 and v0 are bounded away from zero. Under the hypothesis (H̃ϕ), Problem P is parabolic
non-degenerate, and we may apply standard quasilinear theory to obtain the existence and unique-
ness of classical solution, which is positive in Ω× (0,∞) for all nonnegative and compactly sup-
ported initial data.
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2 Existence and uniqueness of the solution of Problem (P)
Let us consider the sequence of approximating problems

(Pε)



ut = du∆ϕε(u)+ ruu(1−u+av) in QT ,

vt = dv∆v+ rvv(1− v−bu) in QT ,

∂ϕε(u)
∂ν

=
∂v
∂ν

= 0 on ΣT ,

u(x,0) = uε
0(x), v(x,0) = vε

0(x), x ∈Ω,

where ϕε(u) := ϕ(u+ ε)−ϕ(ε). We remark that the function ϕε ∈C3([0,∞)) is such that

ϕε(0) = 0 and ϕ
′
ε(s)> 0 for all s≥ 0.

The initial functions uε
0 and vε

0 are smooth, i.e., uε
0,v

ε
0 ∈C∞(Ω), satisfy 0≤ uε

0≤ 1+a and 0≤ vε
0≤ 1,

and uε
0→ u0, vε

0→ v0 uniformly in Ω as ε → 0.

Theorem 2.1. There exists a unique classical solution (uε ,vε) of Problem (Pε).

Proof. The proof is based on Schauder’s fixed point theorem (e.g., [12], Theorem. 5.1.11). Let us
define the closed, convex and bounded set K = {u ∈C(QT ),0≤ u≤ 1+a in QT}.

Let uε ∈K . Then, by [20] (Proposition 7.3.2), there exists a unique solution vε ∈C2,1(QT ) of
the problem (Pε

v ),

(Pε
v )


vt = dv∆v+g(uε ,v) in QT ,

∂v
∂ν

= 0 on ΣT ,

v(x,0) = vε
0(x), x ∈Ω,

where

g(u,v) =


0 if v < 0,
rvv(1− v−bu) if 0≤ v≤ 1,
−rvbu if 1 < v,

which is uniformly bounded, 0≤ vε ≤ 1 in QT . Indeed, we define

Lv(w) = wt−dv∆w−g(uε ,w).

The boundedness of vε follows from the comparison principle and the fact that Lv(0) ≤ 0 and
Lv(1)≥ 0 whenever uε ≥ 0.

If vε is a solution of Problem (Pε
v ), then we consider the uniformly parabolic problem

(Pε
u )


ut = du∆ϕε(u)+ f (u,vε) in QT ,

∂ϕε(u)
∂ν

= 0 on ΣT ,

u(x,0) = uε
0(x) x ∈Ω,

where

f (u,v) =


0 if u < 0,
ruu(1−u+av) if 0≤ u≤ 1+a,
−rua(1+a)(1− v) if 1+a < u.
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It follows from [19] (Chap. V, Theorem 7.4) that Problem (Pε
u ) possesses a unique classical solution

ûε ∈ C2+α,(2+α)/2(QT ) for all α ∈ (0,1). Moreover, ûε is uniformly bounded in QT , namely 0 ≤
ûε ≤Ca := 1+a for each (x, t) ∈ QT . Indeed, let us define

Lu(w) = wt−du∆ϕε(w)− f (w,vε).

Then, Lu(0)≤ 0 and Lu(Ca)≥ 0 and the uniform boundedness follows from the standard compar-
ison principle.

We consider the map F : K → K such that uε 7→ vε 7→ ûε =: F (uε). In order to apply
Schauder’s fixed point theorem we have to show that the map F is compact and continuous from
K into C(QT ).

(i) compactness of F : If {uε
j}∞

j=1 is a sequence of functions in K , then it follows from the
regularity of all ûε

j and the compactness of the embedding C2+α,(2+α)/2(QT ) ⊂C(QT ) that the se-
quence {F (uε

j)}∞
j=1 is relatively compact in C(QT ).

(ii) continuity of F : For any two solutions vε
1 and vε

2 of Problem (Pε
v ) which correspond to

the functions uε
1 and uε

2 from K and the initial functions vε
1,0 and vε

2,0, respectively, and such that
0≤ vε

1,v
ε
2 ≤ 1, we deduce that

ˆ
Ω

|g(uε
1,v

ε
1)−g(uε

2,v
ε
2)|dx = rv

ˆ
Ω

|vε
1(1− vε

1−buε
1)− vε

2(1− vε
2−buε

2)|dx

= rv

ˆ
Ω

∣∣vε
1− vε

2− ((vε
1)

2− (vε
2)

2)+bvε
2(u

ε
2−uε

1)+buε
1(v

ε
2− vε

1)
∣∣dx

≤ rv(3+bCa)

ˆ
Ω

|vε
1− vε

2|dx+brv

ˆ
Ω

|uε
1−uε

2|dx.

With this estimate at hand, the stability property in [5], Corollary 11, namely,

‖vε
1(t)− vε

2(t)‖L1(Ω) ≤
∥∥vε

1,0− vε
2,0
∥∥

L1(Ω)
+

ˆ t

0
‖g(uε

1,v
ε
1)−g(uε

2,v
ε
2)‖L1(Ω) ds,

implies that

‖vε
1(t)− vε

2(t)‖L1(Ω) ≤
∥∥vε

1,0− vε
2,0
∥∥

L1(Ω)
+C

(ˆ t

0
‖vε

1− vε
2‖L1(Ω) ds+

ˆ t

0
‖uε

1−uε
2‖L1(Ω) ds

)
(6)

for some positive constant C. By using Gronwall’s inequality we deduce that1

‖vε
1(t)− vε

2(t)‖L1(Ω) ≤ eCt
(∥∥vε

1,0− vε
2,0
∥∥

L1(Ω)
+C
ˆ t

0
‖uε

1−uε
2‖L1(Ω) ds

)
1Let y(t) =

∥∥vε
1(t)− vε

2(t)
∥∥

L1(Ω)
, y(0) = ‖vε

1,0− vε
2,0‖L1(Ω), b(t) =

∥∥uε
1(t)−uε

2(t)
∥∥

L1(Ω)
and C > 0. Then, (6) can be

rewritten for t ≥ 0

y(t)≤ y(0)+C
ˆ t

0
(y(s)+b(s))ds.

Let us denote

x(t) = y(0)+C
ˆ t

0
(y(s)+b(s))ds.
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for 0 < t ≤ T , so that
ˆ T

0
‖vε

1(t)− vε
2(t)‖L1(Ω) dt ≤ 1

C
eCT

(∥∥vε
1,0− vε

2,0
∥∥

L1(Ω)
+C
ˆ T

0
‖uε

1−uε
2‖L1(Ω) ds

)
. (7)

Similarly, any two solutions ûε
1 and ûε

2 of Problem (Pε
u ) that correspond to vε

1, vε
2 and uε

1,0, uε
2,0

satisfy

‖ûε
1(t)− ûε

2(t)‖L1(Ω) ≤
∥∥uε

1,0−uε
2,0
∥∥

L1(Ω)
+C

(ˆ t

0
‖ûε

1− ûε
2‖L1(Ω) ds+

ˆ t

0
‖vε

1− vε
2‖L1(Ω) ds

)
(8)

where C is a constant. Therefore, we deduce the inequality
ˆ T

0
‖ûε

1(t)− ûε
2(t)‖L1(Ω) dt ≤ 1

C
eCT

(∥∥uε
1,0−uε

2,0
∥∥

L1(Ω)
+C
ˆ T

0
‖vε

1− vε
2‖L1(Ω) ds

)
. (9)

Let us consider a convergent sequence {uε
j}∞

j=1 in K and denote its limit by uε , i.e., uε
j → uε in

K as j→ ∞. Assume also that the initial functions satisfy vε
j,0 = vε

0 and ûε
j,0 = uε

0. Then,

ˆ T

0

∥∥F (uε
j)−F (uε)

∥∥
L1(Ω)

ds =
ˆ T

0

∥∥ûε
j − ûε

∥∥
L1(Ω)

ds

≤ eCT
ˆ T

0

∥∥vε
j − vε

∥∥
L1(Ω)

ds

≤ e2CT
ˆ T

0

∥∥uε
j −uε

∥∥
L1(Ω)

ds

(10)

by (7) and (9). Hence, it follows from (10) that F is continuous in the L1(QT ) norm and F (uε
j)→

F (uε) in L1(QT ) as j→∞. Since F is a compact map from K to C(QT ) we deduce that F (uε
j)→

F (uε) in C(QT ) as j→ ∞.

Then, y(t)≤ x(t) for t > 0, x(0) = y(0) and,

x′(t) =C(y(t)+b(t)− y(0)−b(0)).

Since y(t)≤ x(t) and y(0)≥ 0 and b(0)≥ 0, then we deduce

x′(t)≤C(x(t)+b(t)),

and, after multiplication by e−Ct ,
(x(t)e−Ct)′ ≤Cb(t)e−Ct .

Integration over (0, t) then gives

x(t)e−Ct − x(0)≤C
ˆ t

0
b(s)e−Cs ds.

Since y(t)≤ x(t) and x(0) = y(0), we deduce that

y(t)≤ x(t)≤ eCt
(

y(0)+C
ˆ t

0
b(s)e−Cs ds

)
≤ eCt

(
y(0)+C

ˆ t

0
b(s)ds

)
.

Please note that a similar integral form of the Gronwall inequality can be found in [21] on p. 25.
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Therefore, F : uε 7→ ûε is continuous and compact for the C(QT ) topology from the closed,
convex, bounded set K into itself. We deduce from Schauder’s fixed point theorem that there exists
a function uε ∈K such that F (uε) = uε . This proves the existence of a solution of Problem (Pε).

The uniqueness of the solution follows from the stability properties (6) and (8): for t ∈ [0,T ],

‖uε
1(t)−uε

2(t)‖L1(Ω) + ‖v
ε
1(t)− vε

2(t)‖L1(Ω)

≤
∥∥uε

1,0−uε
2,0
∥∥

L1(Ω)
+
∥∥vε

1,0− vε
2,0
∥∥

L1(Ω)

+C
ˆ t

0

(
‖uε

1(s)−uε
2(s)‖L1(Ω)+‖v

ε
1(s)− vε

2(s)‖L1(Ω)

)
ds.

Thus, by Gronwall’s inequality we obtain

‖uε
1(t)−uε

2(t)‖L1(Ω) + ‖v
ε
1(t)− vε

2(t)‖L1(Ω)

≤ eCt
(∥∥uε

1,0−uε
2,0
∥∥

L1(Ω)
+
∥∥vε

1,0− vε
2,0
∥∥

L1(Ω)

)
for each t ∈ [0,T ]. If we set uε

1,0 = uε
2,0 and vε

1,0 = vε
2,0 we deduce that uε

1 = uε
2 and vε

1 = vε
2 for each

t ∈ [0,T ] and a.e. in Ω.

Next we return to the study of Problem (P).

Definition 2.1. We say that a pair (u,v) is a weak solution to Problem (P) if

i) u,v ∈C(QT ) and

ii) for any ζ ∈C2,1(QT ), ∂νζ = 0 on ΣT and for each t ∈ [0,T ]
ˆ

Ω

u(t)ζ (t)dx =
ˆ

Ω

u0ζ (0)dx+
ˆ t

0

ˆ
Ω

(duϕ(u)∆ζ + ruu(1−u+av)ζ +uζt)dxds (11)

and
ˆ

Ω

v(t)ζ (t)dx =
ˆ

Ω

v0ζ (0)dx+
ˆ t

0

ˆ
Ω

(dvv∆ζ + rvv(1− v−bu)ζ + vζt)dxds. (12)

Theorem 2.2. Problem (P) admits a unique weak solution (u,v) such that

0≤ u≤ 1+a and 0≤ v≤ 1. (13)

in Ω× [0,∞).

Proof. We first prove the existence of the solution. To that purpose, we will show that the sequence
{(uε ,vε)} converges uniformly to a limit (u,v) as ε → 0, where (u,v) turns out to be the unique
weak solution of Problem (P). In fact, it is handy to set Uε = ϕε(uε) and to prove the uniform
convergence of {Uε} in C(QT ). We remark that since 0≤ uε ≤ 1+a in QT and ϕ is increasing on
[0,∞), we have that 0 ≤ ϕε(uε) = ϕ(uε + ε)−ϕ(ε) ≤ ϕ(1+ a+ ε) ≤ ϕ(2Ca), where Ca = 1+ a,
as we may assume without loss of generality that ε <Ca. Hence 0≤Uε ≤ ϕ(2+a) in QT .

In view of (Hϕ) and the definition of ϕε , the function ϕε is a convex strictly increasing function
from [0,2Ca] into [0,ϕε(2Ca)]. Hence, we can define βε =ϕ−1

ε which is a concave strictly increasing
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function on the interval [0,ϕε(2Ca)]. Since ϕ is convex on [0,2Ca], the function ε 7→ ϕε(s) is
nondecreasing at each s ∈ [0,2Ca]. Indeed, define f (ε) = ϕε(s); then f ′(ε) = ϕ ′(s+ε)−ϕ ′(ε)≥ 0
thanks to the convexity of ϕ . We deduce that ϕ(s) ≤ ϕε(s) for all s ∈ [0,2Ca] and, in particular,
[0,ϕ(2Ca)] ⊂ [0,ϕε(2Ca)] for all 0 ≤ ε ≤ Ca. Since ϕε(uε) ∈ [0,ϕ(2Ca)] for all ε ≤ Ca, we can
restrict the definition of βε to the interval [0,ϕ(2Ca)].

Next, we define β (s) = ϕ−1(s) for s ∈ [0,ϕ(2Ca)]. Then,

βε → β uniformly on [0,ϕ(2Ca)] as ε → 0.

Indeed, the function ε 7→ βε(s) is nonincreasing for each s ∈ [0,ϕ(2Ca)]. Thus, the sequence
{βε}ε>0 is a monotone sequence of continuous functions tending pointwise to the continuous func-
tion β on the compact set [0,ϕ(2Ca)] as ε → 0. We deduce the uniform convergence from Dini’s
theorem.

By setting Uε = ϕε(uε) we obtain the equation for Uε ,
∂

∂ t
βε(Uε) = du∆Uε + f (βε(Uε),vε) in QT ,

∂

∂ν
Uε = 0 on ΣT ,

Uε(x,0) = ϕε(uε
0(x)), x ∈Ω,

where f (βε(Uε),vε) = ruβε(Uε)(1− βε(Uε)+ avε) is bounded uniformly in ε . Multiplying the
equation for Uε by Uε and integrating over Ω givesˆ

Ω

∂βε(Uε)

∂ t
Uε dx+du

ˆ
Ω

|∇Uε |2 dx =
ˆ

Ω

f (βε(Uε),vε)Uε dx.

Integration in time then implies thatˆ T

0

ˆ
Ω

∂βε(Uε)

∂ t
Uε dxdt +du

ˆ T

0

ˆ
Ω

|∇Uε |2 dxdt ≤C1, (14)

where the positive constant C1 does not depend on ε .
We set Fε(s) =

´ s
0 β ′ε(ζ )ζ dζ . Since ϕ ′ε(s)≥ 0 for s ≥ 0, then also β ′ε(s)≥ 0 and Fε(s)≥ 0 for

all s≥ 0. We obtainˆ T

0

ˆ
Ω

∂βε(Uε)

∂ t
Uε dxdt =

ˆ T

0

ˆ
Ω

∂Fε(Uε)

∂ t
dxdt =

ˆ
Ω

Fε(Uε(T ))dx−
ˆ

Ω

Fε(Uε(0))dx (15)

where ˆ
Ω

Fε(Uε(0))dx =
ˆ

Ω

Fε(ϕε(uε
0))dx

=

ˆ
Ω

ˆ
ϕε (uε

0)

0
β
′
ε(ζ )ζ dζ dx

≤
ˆ

Ω

ϕε(uε
0)

ˆ
ϕε (uε

0)

0
β
′
ε(ζ )dζ dx

=

ˆ
Ω

ϕε(uε
0)(βε(ϕε(uε

0))−βε(0))dx

=

ˆ
Ω

ϕε(uε
0)u

ε
0 dx

≤C2

(16)
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where C2 = (1+ a)ϕ(2+ a)|Ω| since 0 ≤ uε
0 ≤ 1+ a and 0 ≤ ϕε(uε

0) ≤ ϕ(2+ a). By substituting
(15) and (16) into (14) we obtain

du

ˆ T

0

ˆ
Ω

|∇Uε |2 dxdt ≤C1 +C2.

This implies that {Uε}ε>0 is bounded in L2(0,T ;H1(Ω)) uniformly in ε .
Since uε

0 → u0 uniformly in Ω as ε → 0, there exists a positive function ω such that ω(s)→ 0
as s→ 0 and such that for all 0 < ε < ε0 we have that∣∣uε

0(x)−uε
0(x
′)
∣∣≤ ω(x− x′) for all x,x′ ∈Ω,

so that also ∣∣u0(x)−u0(x′)
∣∣≤ ω(x− x′) for all x,x′ ∈Ω.

By the results of DiBenedetto [11] (Theorem 6.2 and the following corollary) we deduce that
{Uε}ε>0 is equicontinuous in QT and thus relatively compact in C(QT ). Thus, there exists U ∈
C(QT ) and a subsequence of {Uε} (denoted again by {Uε}) such that Uε →U uniformly in C(QT )
as ε → 0.

Since βε(s)→ β (s) uniformly on [0,ϕ(2Ca)] as ε→ 0 and β (Uε)→ β (U) uniformly in C(QT )
as ε → 0, we deduce from the inequality

|uε −β (U)|= |βε(Uε)−β (U)| ≤ |βε(Uε)−β (Uε)|+ |(β (Uε)−β (U)|

that
uε → u uniformly in C(QT ) as ε → 0, (17)

where we set u = β (U) (i.e., U = ϕ(u)).
A similar reasoning permits to show that

vε → v uniformly in C(QT ) as ε → 0. (18)

Let ζ ∈C2,1(QT ) be such that ∂νζ = 0 for (x, t)∈ ΣT . Using the uniform convergence properties
(17) and (18) and a similar property for ϕε(uε), Lebesgue’s dominated convergence theorem and
the fact that uε

0 → u0 and vε
0 → v0 uniformly in Ω as ε → 0 allows us to pass to the limit ε → 0 in

the weak formulationˆ
Ω

uε(t)ζ (t)dx =
ˆ

Ω

uε
0ζ (0)dx+du

ˆ t

0

ˆ
Ω

ϕε(uε)∆ζ dxds+
ˆ t

0

ˆ
Ω

uε
ζt dxds

+ ru

ˆ t

0

ˆ
Ω

uε(1−uε +avε)ζ dxds

and ˆ
Ω

vε(t)ζ (t)dx =
ˆ

Ω

vε
0ζ (0)dx+dv

ˆ t

0

ˆ
Ω

vε
∆ζ dxds+

ˆ t

0

ˆ
Ω

vε
ζt dxds

+ rv

ˆ t

0

ˆ
Ω

vε(1− vε −buε)ζ dxds

to obtain (11) and (12). Therefore (u,v) is a weak solution to Problem (P).
We obtain the uniform bounds (13) as a consequence of the uniform bounds 0≤ uε ≤ 1+a and

0≤ vε ≤ 1 for each ε > 0 and the uniform convergence properties (17) and (18).
The proof of the uniqueness of the solution is similar to the proof of the uniqueness in Theo-

rem 2.1, since the stability properties (6) and (8) hold also for the solution of Problem (P).
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3 Convergence to equilibrium as t→ ∞

We remark that the system (P) of ordinary differential equations that corresponds to (P) admits
several steady states in the positive quadrant R2

+ = {(r,s) : r≥ 0,s≥ 0} depending on the value of b.
If 0 < b < 1, then the system (P) possesses four equilibria (u∞,v∞) ∈ {(0,0),(1,0),(0,1),(u∗,v∗)}
where u∗ = (1 + a)/(1 + ab) > 0 and v∗ = (1− b)/(1 + ab) > 0. Stability analysis gives that
the only stable equilibrium is (u∞,v∞) = (u∗,v∗). In the case when b ≥ 1, the set of equilibria
is {(0,0),(1,0),(0,1)}, since v∗ < 0 for b > 1. From these, (u∞,v∞) = (1,0) is the only stable
steady state of the system (P). We will show below that the equilibrium state{

(u∗,v∗) for 0 < b < 1,
(1,0) for b≥ 1,

is the globally stable steady state solution of Problem (P).
For later reference we define

Lu(s) = st−du∆ϕ(s)− rus(1− s+av), (19)
Lv(s) = st−dv∆s− rvs(1− s−bu). (20)

3.1 Positivity of the solution after some time
We start by proving that the solution (u,v) of Problem (P) becomes positive in Ω in a finite time.
First, we consider the solution of an initial value problem for a scalar nonlinear Fisher-KPP equation.

Lemma 3.1. Let α,β be positive constants and let w0 ∈C(Ω) be a nonnegative function such that´
Ω

w0(x)dx > 0. Then, the weak solution w of the Fisher-KPP equation with degenerate diffusion
wt = d∆ϕ(w)+αw(β −w) in Ω× (0,∞),

∂ϕ(w)
∂ν

= 0 on ∂Ω× (0,∞),

w(x,0) = w0(x), x ∈Ω,

(21)

converges exponentially fast to β in C(Ω) as t→ ∞, where the convergence rate only depends on α

and β .

Proof. We remark that the functional Lw(s) = st − d∆ϕ(s)− αs(β − s) associated with Prob-
lem (21) satisfies Lw(0) ≤ 0 and Lw(C) ≥ 0 for C = max{‖w0‖L∞,β}. Hence we deduce from
the weak maximum principle that 0 ≤ w ≤ max{‖w0‖L∞,β} in Ω× [0,∞). Let z be the unique
solution of the problem 

zt = d∆ϕ(z) in Ω× (0,∞),

∂ϕ(z)
∂ν

= 0 on ∂Ω× (0,∞),

z(x,0) = z0(x) = min
x∈Ω
{w0(x), β}, x ∈Ω.
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We deduce from the weak maximum principle that 0 ≤ z ≤ β in Ω× (0,∞). Moreover, since
Lw(z) = −αz(β − z) ≤ 0 and z0(x) ≤ w0(x) in Ω, it follows that z ≤ w in Ω× [0,∞) by the com-
parison principle. We set

a(z0) =
1
|Ω|

ˆ
Ω

z0(x)dx > 0.

Then, by Theorem 20.16 in [22],
lim
t→∞
|z(x, t)−a(z0)|= 0

uniformly in Ω. Hence, for each 0 < µ < a(z0) there exists tµ > 0 such that w(x, t)≥ z(x, t)≥ µ > 0
in Ω× [tµ ,∞). For further use we fix the pair (µ, tµ) with 0 < µ < a(z0).

We remark that
w≤ w≤ w in Ω× [tµ ,∞), (22)

where w and w are the solutions of, respectively,{
wt = αw(β −w) in Ω× (tµ ,∞),

w(x, tµ) = min{µ,β/2}, x ∈Ω,

and {
wt = αw(β −w) in Ω× (tµ ,∞),

w(x, tµ) = max{‖w0‖L∞(Ω),2β}, x ∈Ω.

Indeed, both w and w satisfy Lw(w) = Lw(w) = 0 and

w( · , tµ)≤ µ ≤ w( · , tµ)≤max{‖w0‖L∞(Ω),β} ≤ w( · , tµ)

for the data at time tµ in Ω. Thus, (22) follows from the comparison principle.
Since the solution of the ODE equation n′ = αn(β −n) with n(tµ) = n0,

n(t) =
β

1+ γe−αβ (t−tµ )
, γ =

β −n0

n0
,

converges to β exponentially fast as t→ ∞, then both w(t) and w(t) converge to β as t→ ∞, and as
a consequence of (22), w(t)→ β in C(Ω) exponentially fast as t→ ∞ for all α,β > 0.

Remark 3.1. We can prove in a similar way that the solution of the standard Fisher-KPP equation
with linear diffusion (set ϕ(w) = w in (21)) converges exponentially fast to β in C(Ω) as t→ ∞ for
arbitrary α,β > 0.

Corollary 3.2. There exists t∗ > 0 such that u and v are strictly positive in Ω× [t∗,∞).

Proof. Let u be the nonnegative solution of the problem
ut = du∆ϕ(u)+ ruu(1−u) in Ω× (0,∞),

∂ϕ(u)
∂ν

= 0 on ∂Ω× (0,∞),

u(x,0) = u0(x), x ∈Ω,
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where u0 is such that 0≤ u0(x)≤ 1 in Ω. Since the functional Lu defined by (19) satisfies Lu(u)≤
−ruavu≤ 0 for v≥ 0, then by the standard comparison principle we deduce that u≥ u in Ω× [0,∞).
Since by Lemma 3.1, u(t)→ 1 in C(Ω) as t→ ∞, there exists t∗ > 0 such that for all t ≥ t∗ we have
u≥ u > 0 in Ω× [t∗,∞).

Since the problem for v is uniformly parabolic, then v(x, t) > 0 in Ω× (0,∞) by the strong
maximum principle.

3.2 Large time behaviour in the case that 0 < b < 1

Lemma 3.3. Let 0 < b < 1, then the solution (u,v) of Problem (P) converges to (u∗,v∗) = ((1+
a)/(1+ab),(1−b)/(1+ab)) in [C(Ω)]2 as t→ ∞.

Proof. We remark that the steady state solution (u∗,v∗) of Problem (P) satisfies

1 = u∗−av∗ and 1 = v∗+bu∗. (23)

By Corollary 3.2 there exists a time t∗ such that u and v are strictly positive in Ω× [t∗,∞). Let us
consider for t ≥ t∗ the functional V (u,v) : R2

+→ R+ defined by

V (u,v) = α

ˆ
Ω

(u−u∗−u∗ log
u
u∗

)dx+β

ˆ
Ω

(v− v∗− v∗ log
v
v∗
)dx, (24)

for some constants α,β still to be determined. Then V is positive for (u,v) 6= (u∗,v∗) (see (33)
below) and satisfies V (u∗,v∗) = 0. Differentiation of V (u,v) in time gives

d
dt

V (u(t),v(t)) = α

ˆ
Ω

u−u∗

u
ut dx+β

ˆ
Ω

v− v∗

v
vt dx

= α

ˆ
Ω

u−u∗

u
(du∆ϕ(u)+ ruu(1−u+av)) dx+β

ˆ
Ω

v− v∗

v
(dv∆v+ rvv(1− v−bu)) dx

where integration by parts yields

αdu

ˆ
Ω

u−u∗

u
∆ϕ(u)dx =−αdu

ˆ
Ω

∇

(
1− u∗

u

)
·∇ϕ(u)dx =−αduu∗

ˆ
Ω

ϕ
′(u)
|∇u|2

u2 dx

and

βdv

ˆ
Ω

v− v∗

v
∆vdx =−βdv

ˆ
Ω

∇

(
1− v∗

v

)
·∇vdx =−βdvv∗

ˆ
Ω

|∇v|2

v2 dx.

Next we consider the reaction terms. The equalities (23) together with setting α = brv and β = aru
imply that

αru

ˆ
Ω

(u−u∗)(1−u+av)dx+β rv

ˆ
Ω

(v− v∗)(1− v−bu)dx

= αru

ˆ
Ω

(u−u∗)(u∗−av∗−u+av)dx+β rv

ˆ
Ω

(v− v∗)(v∗+bu∗− v−bu)dx

= −αru

ˆ
Ω

(u−u∗)2 dx−β rv

ˆ
Ω

(v− v∗)2 dx,
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which in turn yields

d
dt

V (u(t),v(t)) = −αduu∗
ˆ

Ω

ϕ
′(u)
|∇u|2

u2 dx−βdvv∗
ˆ

Ω

|∇v|2

v2 dx

−αru

ˆ
Ω

(u−u∗)2 dx−β rv

ˆ
Ω

(v− v∗)2 dx≤ 0.
(25)

We deduce from (25) that V (u(t),v(t)) is nonincreasing in time along the solution orbit (u(t),v(t))
and that ∂tV (u(t),v(t))< 0 for (u,v) 6= (u∗,v∗).

Integrating the equation (25) on (t∗,T ) for T > t∗ gives

ˆ T

t∗

ˆ
Ω

(
αru(u−u∗)2 +β rv(v− v∗)2) dxdτ ≤V (u(t∗),v(t∗)).

Hence, ˆ T

t∗

ˆ
Ω

(
(u−u∗)2 +(v− v∗)2) dxdτ ≤C1

for each T ≥ t∗ and C1 =V (u(t∗),v(t∗))/min{αru,β rv}> 0. By Lebesgue’s monotone convergence
theorem, we obtain ˆ

∞

t∗

ˆ
Ω

(
(u−u∗)2 +(v− v∗)2) dxdτ ≤C1. (26)

Multiplying the equation for u by u−u∗ and integrating over Ω yields

1
2

d
dt

ˆ
Ω

(u−u∗)2 dx+du

ˆ
Ω

ϕ
′(u)|∇u|2 dx+ ru

ˆ
Ω

u(u−u∗)2 dx

= aru

ˆ
Ω

u(u−u∗)(v− v∗)dx

≤ aCaru

ˆ
Ω

|(u−u∗)(v− v∗)|dx

.

Using Young’s inequality we deduce that

d
dt

ˆ
Ω

(u−u∗)2 dx≤ aCaru

ˆ
Ω

(
(u−u∗)2 +(v− v∗)2) dx.

Integrating this inequality over (t, t + s) for t ≥ t∗ and s > 0 gives
ˆ

Ω

(u−u∗)2(t + s)dx≤
ˆ

Ω

(u−u∗)2(t)dx+C2

ˆ t+s

t

ˆ
Ω

(
(u−u∗)2 +(v− v∗)2) dxdτ. (27)

Similarly, we can show that
ˆ

Ω

(v− v∗)2(t + s)dx≤
ˆ

Ω

(v− v∗)2(t)dx+C2

ˆ t+s

t

ˆ
Ω

(
(u−u∗)2 +(v− v∗)2) dxdτ. (28)

In both inequalities (27) and (28), C2 = max{aCaru,brv}.
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In view of (26), there exists a sequence {tn}, tn→∞ as n→∞, such that u(tn)→ u∗ and v(tn)→
v∗ in L2(Ω) as tn→ ∞. Thus, for each ε > 0 there exist T1 ≥ t∗ such that for all tn ≥ T1

ˆ
Ω

(u−u∗)2(tn)dx≤ ε

2
and

ˆ
Ω

(v− v∗)2(tn)dx≤ ε

2
. (29)

We also deduce from (26) that, for ε > 0 arbitrary, there exists T2 > 0 such that for all tn ≥ T2 and
s > 0 ˆ tn+s

tn

ˆ
Ω

(
(u−u∗)2 +(v− v∗)2) dxdτ ≤ ε

2C2
. (30)

In view of the estimates (29) and (30), we deduce from (27) and (28) that for each tn ≥max{T1,T2}
and for all s > 0

ˆ
Ω

(u−u∗)2(tn + s)dx≤ ε and
ˆ

Ω

(v− v∗)2(tn + s)dx≤ ε. (31)

Next we show that u(tn)→ u∗ and v(tn)→ v∗ in the L2-norm along all subsequences {tn} such that
tn→ ∞. Indeed, let us suppose that there exists a subsequence {u(tm)} and a function u∗∗ such that

u(tm)→ u∗∗ as tm→ ∞

in L2(Ω). Let

ε =
1
8
‖u∗−u∗∗‖2

L2(Ω),

and let T1 and T2 be such that (31) is satisfied for all tn ≥max{T1,T2} and s > 0. Moreover, let m be
such that

‖u(tm)−u∗∗‖2
L2(Ω) ≤ ε.

Choose s = tm− tn. Then, it follows from (31) that

‖u∗−u(tm)‖2
L2(Ω) ≤ ε,

which implies that

‖u∗−u∗∗‖2
L2(Ω) ≤ 2(‖u∗−u(tm)‖2

L2(Ω)+‖u(tm)−u∗∗‖2
L2(Ω))≤ 4ε =

1
2
‖u∗−u∗∗‖2

L2(Ω),

and consequently that u∗∗ = u∗. We deduce that u(t)→ u∗ and v(t)→ v∗ in L2(Ω) as t→ ∞.
Moreover, the convergence u(t)→ u∗ and v(t)→ v∗ is uniform in C(Ω) as t → ∞. Indeed,

by the results of DiBenedetto [11] (Theorem 6.2 and the following corollary) we deduce that the
sequence {u(t)}t≥1 is equicontinuous in Ω and thus relatively compact in C(Ω). Hence, we deduce
the uniform convergence u(t)→ u∗ in C(Ω) as t → ∞. The uniform convergence of v(t) to v∗ as
t→ ∞ follows in a similar way.

Lemma 3.4 (Rate of convergence for 0 < b < 1). Let 0 < b < 1, then the solution (u,v) of Prob-
lem (P) converges exponentially fast to (u∗,v∗) in [Lp(Ω)]2 for all p≥ 2 as t→ ∞.
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Proof. Without loss of generality we assume that the solution (u,v) is different from (u∗,v∗). We
deduce from the uniform convergence u(t)→ u∗ and v(t)→ v∗ in C(Ω) as t→ ∞ that

for all µ ∈ (0,min(u∗,v∗)), there exists tµ > 0 such that u(x, t), v(x, t)≥ µ in Ω× [tµ ,∞). (32)

Taylor’s theorem implies that for each differentiable real valued strictly concave function f defined
on an interval I

f (s1)≤ f (s2)+ f ′(s2)(s1− s2)

for all s1,s2 ∈ I, where the equality holds if and only if s1 = s2. Hence, taking f (s) = −s logs so
that f ′(s) =−(logs+1) yields after some calculations

s1− s2 ≤ s1(logs1− logs2) (33)

for each s1 ≥ 0 and s2 > 0. Moreover, given a positive parameter p, the function h : R+ → R+

defined by

h(s, p) =
logs− log p

s− p
(34)

is decreasing in s since hs(s, p) = (s− p− s log(s/p))/(s(s− p)2)≤ 0 by (33). In view of (32), for
a fixed 0 < µ < min{u∗,v∗} such that u(x, t)≥ µ and v(x, t)≥ µ in Ω× [tµ ,∞), it follows from the
monotonicity of h that

h(u(x, t),u∗)≤ h(µ,u∗) and h(v(x, t),v∗)≤ h(µ,v∗) (35)

for each (x, t) ∈Ω× [tµ ,∞).
We have seen that the functional V defined by (24), i.e.

V (u,v) = α

ˆ
Ω

(u−u∗−u∗ log
u
u∗

)dx+β

ˆ
Ω

(v− v∗− v∗ log
v
v∗
)dx (36)

is a Lyapunov functional of the system. By using (33), (35) and (25) we obtain for each t ≥ tµ that

V (u(t),v(t))≤ α

ˆ
Ω

(u−u∗) log
u
u∗

dx+β

ˆ
Ω

(v− v∗) log
v
v∗

dx

= α

ˆ
Ω

(u−u∗)2h(u,u∗)dx+β

ˆ
Ω

(v− v∗)2h(v,v∗)dx

≤ αh(µ,u∗)
ˆ

Ω

(u−u∗)2 dx+βh(µ,v∗)
ˆ

Ω

(v− v∗)2 dx

≤−K1
d
dt

V (u(t),v(t))

where dV/dt is given in (25) and K1 = max{h(µ,u∗)/ru,h(µ,v∗)/rv}. Gronwall’s inequality im-
plies for t ≥ tµ that

V (u(t),v(t))≤V (u(tµ),v(tµ))e−(t−tµ )/K1 =Cµe−(t−tµ )/K1, (37)

where Cµ = V (u(tµ),v(tµ)). We have now proved the exponential convergence to zero of the Lya-
punov functional. The final step is to prove the exponential convergence of the solution to the steady
state in the Lp-norm.
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We recall Pinsker’s inequality

p(s) = 2(1+2s)(s−1− logs)−3(s−1)2 ≥ 0, (38)

which holds for all s> 0. Indeed, we can easily verify that p(1)= p′(1)= 0 and p′′(s)= 2(s−1)2/s2

so that p is strictly convex on (0,∞) and attains its minimum at s = 1. We also refer to Exercise
2.3.26 on p. 58 in [6]. Since u,v > 0 in Ω× [tµ ,∞) as well as u and v are uniformly bounded from
above (13), by substituting s = u/u∗ in Pinsker’s inequality (38) and integrating in space we obtain
that

3
ˆ

Ω

(u−u∗)2 dx≤ 2
ˆ

Ω

(u∗+2u)(u−u∗−u∗ log
u
u∗

)dx

≤ 2(u∗+2Ca)

ˆ
Ω

(u−u∗−u∗ log
u
u∗

)dx,
(39)

where the non-negativity of the last integral follows from (33) for s1 = u∗ and s2 = u. Similarly for
s = v/v∗ we deduce that

3
ˆ

Ω

(v− v∗)2 dx≤ 2(v∗+2)
ˆ

Ω

(v− v∗− v∗ log
v
v∗
)dx. (40)

We deduce from (39) and (40) that

α

ˆ
Ω

(u−u∗−u∗ log
u
u∗

)dx+β

ˆ
Ω

(v− v∗− v∗ log
v
v∗
)dx≥

3α

2u∗+4Ca

ˆ
Ω

(u−u∗)2 dx+
3β

2v∗+4

ˆ
Ω

(v− v∗)2 dx

so that by (36) we have for t ≥ tµ

V (u(t),v(t))≥ K2

(
‖u−u∗‖2

L2(Ω)+‖v− v∗‖2
L2(Ω)

)
(41)

where

K2 = min
{

3α

2u∗+4Ca
,

3β

2v∗+4

}
.

From (37) and (41) we deduce the exponential convergence of the solution (u,v) to the positive
steady state (u∗,v∗) in L2(Ω), namely,

‖u−u∗‖2
L2(Ω)+‖v− v∗‖2

L2(Ω) ≤
Cµ

K2
e−(t−tµ )/K1.

The uniform bound (13), an interpolation inequality between L2 and L∞ (cf., Eq. 1.23 on p.13 in
[21]), namely

‖u−u∗‖Lp(Ω) ≤ ‖u−u∗‖1−2/p
L∞(Ω)

‖u−u∗‖2/p
L2(Ω)

(42)

for u−u∗ and a similar inequality for v− v∗ yield

‖u−u∗‖Lp(Ω)+‖v− v∗‖Lp(Ω) ≤ K3e−(t−tµ )/(pK1)

where

K3 =
(
(Ca +u∗)1−2/p +(1+ v∗)1−2/p

)(Cµ

K2

)1/p

.

Hence, we conclude the exponential convergence of (u,v) to (u∗,v∗) in Lp(Ω) for all p ≥ 2 as
t → ∞.
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3.3 Large time behaviour in the case that b≥ 1

Next, we show that whenever b≥ 1 the convergence of the solution of Problem (P) to the stationary
solution (1,0) is uniform in C(Ω) as t → ∞. Our approach is based upon a standard comparison
principle. If b≥ 1, then similarly as in the proof of Lemma 3.4, a suitable Lyapunov functional can
be used to explicitly compute the rate of convergence in [Lp(Ω)]2 for all p ≥ 2. If b > 1, then the
convergence is exponential, whereas if b = 1, the convergence is algebraic.

Lemma 3.5. Let b ≥ 1, then the solution (u,v) of Problem (P) converges to (1,0) in [C(Ω)]2 as
t→ ∞.

Proof. Let u be the nonnegative lower solution for the parabolic problem for u from the proof of
Corollary 3.2, then u ≥ u in Ω× (0,∞). We deduce from Lemma 3.1 that u(t)→ 1 exponentially
fast in C(Ω) as t→ ∞. Thus, for all ϑ ∈ (0,b) there exists T1 > 0 such that for all t ≥ T1 we have

u≥ u≥ 1− ϑ

b
(43)

in Ω× [T1,∞).
Next, let v be the solution of

vt = dv∆v+ rvv(ϑ − v) in Ω× (T1,∞),

∂v
∂ν

= 0 on ∂Ω× (T1,∞),

v(x,T1) = v(x,T1), x ∈Ω.

We show that v is an upper solution for the parabolic problems for v. Indeed, since b ≥ 1 and in
view of (43), it follows that

Lv(v) = rvv(bu+ϑ −1)≥ rvv(b−1)≥ 0

in Ω× [T1,∞), where Lv is defined in (20). Therefore, v ≥ v in Ω× [T1,∞) by the comparison
principle. Moreover, we deduce from Lemma 3.1 that v→ ϑ exponentially fast in C(Ω) as t → ∞.
It follows from this uniform convergence that there exists T2 ≥ T1 such that for all t ≥ T2

0≤ v≤ v≤ 2ϑ (44)

in Ω× [T2,∞). Since (44) holds for all ϑ > 0, we deduce that

v(t)→ 0 uniformly in C(Ω) as t→ ∞. (45)

Finally, we find an upper solution u for the parabolic problem for u. We note that, it follows
from the uniform convergence (45) that for ϑ > 0 there exists T3 > 0 such that for all t ≥ T3 we have

0≤ v≤ ϑ

a
(46)

in Ω× [T3,∞). Let u be the solution to
ut = du∆ϕ(u)+ ruu(1+ϑ −u) in Ω× (T3,∞),

∂ϕ(u)
∂ν

= 0 on ∂Ω× (T3,∞),

u(x,T3) = u(x,T3), x ∈Ω.
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In view of (46) we deduce that
Lu(u) = ruu(ϑ −av)≥ 0

in Ω× [T3,∞], where Lu is defined in (19). Thus, u≥ u in Ω× [T3,∞) by the comparison principle.
Moreover, it follows from Lemma 3.1 that u→ 1+ϑ exponentially fast in C(Ω) as t → ∞. Thus,
there exists T4 ≥ T3 such that for all t ≥ T4

u≤ u≤ 1+2ϑ (47)

in Ω× [T4,∞). The estimates (43) and (47) imply the existence of T5 = max{T1,T4} such that for
all t ≥ T5 we have

1− ϑ

b
≤ u≤ 1+2ϑ

in Ω× [T5,∞). Since ϑ > 0 can be chosen arbitrarily, we deduce that

u(t)→ 1 uniformly in C(Ω) as t→ ∞. (48)

Thus, (u,v)(t)→ (1,0) uniformly in C(Ω) as t→ ∞.

Lemma 3.6 (Rate of convergence for b > 1). Let b > 1, then the solution (u,v) of Problem (P)
converges exponentially fast to (1,0) in [Lp(Ω)]2 for all p≥ 2 as t→ ∞.

Proof. We will follow the proof of Lemma 3.4. Without loss of generality we assume that the
solution (u,v) is different from (1,0). It follows from the uniform convergence (48) that

for all µ < 1, there exists tµ > 0 such that u(x, t)≥ µ in Ω× [tµ ,∞).

We consider the functional

V (u,v) = α

ˆ
Ω

(u−1− logu) dx+β

ˆ
Ω

vdx, (49)

on the time interval [tµ ,∞). We obtain that

d
dt

V (u(t),v(t)) = α

ˆ
Ω

u−1
u

ut dx+β

ˆ
Ω

vt dx

= α

ˆ
Ω

u−1
u

(du∆ϕ(u)+ ruu(1−u+av)) dx+β

ˆ
Ω

(dv∆v+ rvv(1− v−bu)) dx

= −αdu

ˆ
Ω

ϕ
′(u)
|∇u|2

u2 −αru

ˆ
Ω

(u−1)2 dx−β rv

ˆ
Ω

v2 dx−αβ (1−1/b)
ˆ

Ω

vdx

≤ 0
(50)

for α = brv, β = aru, 1/b ≤ 1 and t ≥ tµ . Moreover, in the case that b > 1 and for each t ≥ tµ we
can use the inequality s−1≤ s logs for s≥ 0, which is obtained from (33) for s1 = s and s2 = 1, to
calculate

V (u(t),v(t))≤ α

ˆ
Ω

(u−1) logudx+β

ˆ
Ω

vdx

= α

ˆ
Ω

(u−1)2 logu
u−1

dx+β

ˆ
Ω

vdx

≤ αh(µ,1)
ˆ

Ω

(u−1)2 dx+β

ˆ
Ω

vdx

≤−K4
d
dt

V (u(t),v(t)),

(51)
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where the function h is defined by (34) and K4 = max{h(µ,1)/ru,1/(α(1− 1/b))}. Gronwall’s
inequality implies for t ≥ tµ that

V (u(t),v(t))≤V (u(tµ),v(tµ))e−(t−tµ )/K4 =Cµe−(t−tµ )/K4, (52)

where Cµ =V (u(tµ),v(tµ)). For t ≥ tµ , Pinsker’s inequality (38) yields

3α

2(1+2Ca)

ˆ
Ω

(u−1)2 dx≤ α

ˆ
Ω

(u−1− logu)dx. (53)

We deduce from (49), (52), (53) and the trivial observation v2 ≤ v for 0≤ v≤ 1 that

3α

2(1+2Ca)
‖u−1‖2

L2(Ω)+β‖v‖2
L2(Ω) ≤Cµe−(t−tµ )/K4,

i.e.,

‖u−1‖2
L2(Ω)+‖v‖

2
L2(Ω) ≤

Cµ

K5
e−(t−tµ )/K4,

where

K5 = min
{

3α

2+4Ca
, β

}
. (54)

Finally, we deduce from the interpolation inequality (42) and the uniform bound (13) that

‖u−1‖Lp(Ω)+‖v‖Lp(Ω) ≤ K6e−(t−tµ )/(pK4)

where

K6 =
(
(Ca +1)1−2/p +1

)(Cµ

K5

)1/p

.

Hence, we conclude the exponential convergence of (u,v) to (1,0) in Lp(Ω) for all p ≥ 1 as t →
∞.

The case when b = 1 is more delicate and the procedure above does not work. In this case, the
good term (1−1/b)

´
Ω

v in the time derivative of V (u,v) in (50) vanishes. Nevertheless, we can
still show the existence of a constant C > 0 such that

V 2(t)≤CD(t)

for large enough time t, where V (t) =V (u(t),v(t)) and D(t) = D(u(t),v(t)) =−dV (u(t),v(t))/dt.
We obtain that V (t) ≈ C/t, in other words, we deduce the algebraic convergence to zero of the
Lyapunov functional as t→ ∞.

Lemma 3.7 (Rate of convergence for b = 1). Let b = 1, then the solution (u,v) of Problem (P)
converges algebraically fast to (1,0) in [Lp(Ω)]2 for all p≥ 2 as t→ ∞.

Proof. As in the proof of Lemma 3.6, the uniform convergence of the solution (u,v) of Problem P
to the equilibrium (1,0) implies that

for all µ < 1, there exists tµ > 0 such that u(x, t)≥ µ in Ω× [tµ ,∞).
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For the functional V (u,v) defined by (49) we can repeat the same calculations as in (50) and (51).
In particular, we obtain

D(u(t),v(t)) =− d
dt

V (u(t),v(t)) = αdu

ˆ
Ω

ϕ
′(u)
|∇u|2

u2 +αru

ˆ
Ω

(u−1)2 dx+β rv

ˆ
Ω

v2 dx

and
V (u(t),v(t))≤ αh(µ,1)

ˆ
Ω

(u−1)2 dx+β

ˆ
Ω

vdx, (55)

where 0 < µ < 1 and t ≥ tµ . We deduce from the inequality

ˆ
Ω

v2(x)dx≥ 1
|Ω|

(ˆ
Ω

v(x)dx
)2

that

D(u(t),v(t))≥ αru

ˆ
Ω

(u−1)2 dx+
β rv

|Ω|

(ˆ
Ω

vdx
)2

. (56)

In the sequel, we will use the notations V =V (u(t),v(t)), D = D(u(t),v(t)), V1 =
´

Ω
(u−1)2 dx

and V2 =
´

Ω
vdx. Hence, (55) and (56) can be written shortly as

V ≤ αh(µ,1)V1 +βV2 (57)

and

D≥ αruV1 +
β rv

|Ω|
V 2

2 . (58)

Next, we distinguish two cases.
Case I. Suppose that V1 ≥ 1 or V2 ≥ 1. Then, D ≥ K1 = min{αru,β rv/|Ω|}. Moreover, the

uniform estimate (13) implies that 0 ≤ V1 ≤ (C2
a +1)|Ω| and 0 ≤ V2 ≤ |Ω|, where Ca = 1+a. We

deduce from (57) that V ≤ K2 where K2 depends on α , h(µ,1), Ca, β and |Ω|. Hence, we obtain

V 2 ≤ K2
2 =C1K1 ≤C1D, for C1 = K2

2/K1. (59)

Case II. Suppose that 0 ≤ V1 < 1 and 0 ≤ V2 < 1. Then, V1 ≥ V 2
1 and by using the trivial

inequality x2 + y2 ≥ (x+ y)2/2 we estimate D in (58) from below by

D≥ αruV 2
1 +β rvV 2

2 ≥ K3(V1 +V2)
2,

where K3 = min{αru,β rv/|Ω|}/2. On the other hand, in view of (57),

V ≤ K4(V1 +V2),

where K4 = max{αh(µ,1),β}. These two estimates imply

V 2 ≤ K2
4 (V1 +V2)

2 =C2K3(V1 +V2)
2 ≤C2D, for C2 = K2

4/K3. (60)

In view of the estimates (59) and (60), we can take C = max{C1,C2} so that V 2 ≤CD. Hence,
we proved that for t ≥ tµ

dV (t)
dt
≤− 1

C
V 2(t).
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We deduce that
V (t)≤ C

t− tµ +C3
≤ C

t− tµ
for t ≥ tµ , where C3 > 0 depends on the constant C and on u(tµ).

Similarly as in the proof of Lemma 3.6, we can use Pinsker’s inequality (38) to derive the lower
bound for V (u,v) and so to deduce

‖u−1‖2
L2(Ω)+‖v‖

2
L2(Ω) ≤

C
K5

1
t− tµ

,

as well as
‖u−1‖Lp(Ω)+‖v‖Lp(Ω) ≤

K6

t− tµ
where

K6 =
(
(Ca +1)1−2/p +1

)( C
K5

)1/p

and K5 is given by (54).

3.4 Convergence to equilibrium as t→ ∞ under the assumption (H̃ϕ)

Let us assume the hypothesis (H̃ϕ) instead of (Hϕ). Then, Problem (P) turns out to be uniformly
parabolic and possesses a unique classical solution (u,v) ∈ [C2,1(QT )]

2, [19] (Chap. V, Theorem
7.4). In the case when ϕ(u) = u, we refer the readers to [17] for additional details. Moreover, by the
strong maximum principle [19] the solution (u(·, t),v(·, t)) is positive in Ω for all t > 0 so that we do
not have to show eventual positivity of the solution as we did in Section 3.1. Hence, the functionals
V (u,v) given by (4) and (5) are well defined for all times t > 0. Let us, moreover, assume that u0 > 0
and v0 > 0 in Ω. Then, V (u,v) is defined for all t ≥ 0.

By repeating the proofs of Lemmas 3.3 and 3.5, we can show that

(u(t),v(t))→

{
(u∗,v∗) if 0 < b < 1,
(1,0) if b≥ 1,

uniformly in [C(Ω)]2 as t→ ∞, where (u∗,v∗) = ((1+a)/(1+ab),(1−b)/(1+ab)).
Similar calculations as those in Lemmas 3.4 and 3.6 can be used in order to show the exponential

convergence of the solution (u,v) to its respective steady state solution in both cases 0 < b < 1 and
b > 1. Indeed, for a chosen µ < min{u∗,v∗} in the case when 0 < b < 1 and µ < 1 in the case when
b > 1 we can find tµ > 0 so that we can apply (35) to derive (37), resp. (52). However, V (u,v)
is defined for all times t ≥ 0 and it is nonincreasing in time. Thus, if 0 < b < 1, then (37) can be
further estimated from above,

V (u(t),v(t))≤V (u(tµ),v(tµ))e−(t−tµ )/K1

≤V (u0,v0)e−(t−tµ )/K1.

Similarly, if b > 1, instead of (52) we obtain

V (u(t),v(t))≤V (u(tµ),v(tµ))e−(t−tµ )/K4

≤V (u0,v0)e−(t−tµ )/K4.
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However, we cannot remove the constant tµ from the estimates. A lower bound for V (u,v) in terms
of the Lp-distance of the solution (u,v) from the steady state solution is the same as in the degenerate
parabolic case, see Lemmas 3.4 and 3.6.

4 Concluding remarks
We have studied the well-posedness of the degenerate, nonlinear diffusion system (P) for the Ne-
olithic evolution of the farming and hunting-gathering populations u and v, respectively. Further-
more, we studied the asymptotic behaviour of the solution (u,v) of Problem (P). We found that
(u,v) always converges to a spatially homogeneous steady state as t→∞. In particular, if b≥ 1 and
ϕ(u) = p(u)u where p = p(u) is the probability density function satisfying (i)-(iii), then

lim
t→∞

(u,v)(x, t) = (1,0)

uniformly in Ω. In view of (2), this scenario corresponds to the case when g ≥ rH and (F,H)
converges to the state (1,0) as t→ ∞.

If p(F) in the system (2) is specified as p(F) = F/(F +Fc), where a positive constant Fc is
assumed to represent a level of development of farming and food-producing technology, see [15,
18] for additional details, then the convergence result implies that the asymptotic behaviour of the
solution (F,H) of the system (2) is independent of Fc. However, we remark that the transient
behaviour of (F,H) depends on the values of parameters. Indeed, let us suppose that Ω is rather
large. Then, if the parameters of the system (2) are suitably chosen and Fc is relatively small, the
spatial shape of the solution (F,H) becomes radially symmetric, see Fig. 1. On the other hand, for
the same parameters and Fc relatively large we can observe breaking (instability) of radial symmetry
in (F,H), see Fig. 2. It can be numerically confirmed that this phenomena never occurs in (1),
namely, in the case of linear diffusion in the equation for farmers F in (2). We emphasise that this
is a striking difference between the two systems (1) and (2). We therefore call such an instability “a
nonlinear diffusion-induced instability”. We propose to try to understand why nonlinear diffusion
generates such an instability in future work.
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