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Abstract

A spatio-temporal evolution of chemicals appearing in a reversible enzyme reaction and
modelled by a four component reaction-diffusion system with the reaction terms obtained
by the law of mass action is considered. The large time behaviour of the system is studied
by means of entropy methods.
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1 Introduction
In eukaryotic cells, responses to a variety of stimuli consist of chains of successive protein
interactions where enzymes play significant roles, mostly by accelerating reactions. Enzymes
are catalysts that facilitate a conversion of molecules (generally proteins) called substrates into
other molecules called products, but they themselves are not changed by the reaction. In the
reaction scheme proposed by Michaelis and Menten [26] in 1913, an enzyme E converts a
substrate S into a product P through a two step process, schematically written as

S+E
k+


k−

C
kp+−→ E +P, (1)

where C is an intermediate complex and k+,k− and kp+ are positive kinetic rates of the reac-
tion (1). In 1925, the enzyme reaction (1) was analysed by Briggs and Haldane [6] by using
ordinary differential equations (ODE) derived from mass action kinetics. In their quasi-steady-
state approximation (QSSA), the complex is assumed to reach a steady state quickly, i.e., there is
no change in its concentration nC = [C] in time (dnC/dt = 0). The analysis yields an algebraic
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expression for nC, the so-called Michaelis-Menten function, and a simple, though nonlinear,
ODE for the concentration of substrate nS = [S], namely

dnS

dt
=−kp+

e0nS

Km +nS
, (2)

where e0 denotes the true enzyme molarity and Km = (k−+ kp+)/k+ is the Michaelis constant,
[10]. The kinetics of enzyme reactions described by Briggs and Haldane is sometimes called
the Michealis-Menten kinetics. Further details on the existing approximation techniques can be
found in [10, 37, 38, 39, 40], a validation of the QSSA also in [32].

Many important reactions in biochemistry are, however, reversible in the sense that a sig-
nificant amount of the product P exists in the reaction mixture due to a reaction of P with
the enzyme E, [10]. Therefore, the Michaelis-Menten mechanism (1) is incomplete for these
reactions and should be rather replaced by

S+E
k+


k−

C
kp+


kp−

E +P, (3)

where k+,k−,kp+ and kp− are positive kinetic rates.
Almost the entire mathematical modelling of the enzyme reactions (1) and (3) taken with

mass-action kinetics is usually done by means of ODEs, thus assuming that the substrate-
enzyme reaction takes place in a homogeneous medium, [10, 38, 39, 40]. However, protein
pathways occur in living cells, heterogeneous spatial structure of which has an impact on the
enzyme efficiency [36]. Indeed, the cellular crowdedness and subcellular organisation regu-
late many metabolic pathways in the cells and such regulation is often achieved through the
compartmentalisation of biochemical reactions in various intracellular organelles. In eukary-
otic cells, a small molecule, such as a substrate, diffuses rapidly. Therefore, we may consider
the concentration of such small molecules to be distributed relatively uniformly throughout the
compartments. On the other hand, enzymes and other macromolecules diffuse relatively slowly
in the cytosol, in part because they interact with many other macromolecules [1]. Besides the
relatively slow mobility of enzymes, limiting diffusion to a confined space and sequestration of
enzyme activities within compartments protect the cell from toxic byproducts of such specific
enzyme reactions [9]. Protein-tyrosine phosphatase PTP1B, which is an enzyme confined to
the endoplasmic reticulum and which acts as an inhibitor of the receptor tyrosine kinases, may
serve as an example of spatial regulation of the enzyme-substrate activity [42]. Other examples
and further discussion on the spatio-temporal regulation of protein signalling networks can be
found, for example, in [23]. Interactions between diffusion and spatial heterogeneity from a
viewpoint of mathematical analysis are studied, for example, in [29].

In this paper, a spatial reaction-diffusion system for the reversible enzyme reaction (3) is
studied without any kind of quasi-steady-state approximation. Instead, we focus on the asymp-
totic behaviour of a system of four equations for the concentrations of the species appearing
in (3) with the reaction terms obtained by the law of mass action. Moreover, we assume that
each species can diffuse freely and randomly (modelled by linear diffusion) with a constant
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diffusion rate. Thus, we consider the system

∂nS

∂ t
−DS∆nS = k−nC− k+nSnE ,

∂nE

∂ t
−DE∆nE = (k−+ kp+)nC− k+nSnE − kp−nEnP,

∂nC

∂ t
−DC∆nC = k+nSnE − (k−+ kp+)nC + kp−nEnP,

∂nP

∂ t
−DP∆nP = kp+nC− kp−nEnP.

(4)

We assume that ni = ni(t,x) for each i ∈ {S,E,C,P} is defined in the time-space cylinder QT =
I×Ω where I = (0,T ) for 0 < T < ∞ and Ω is an open, bounded and connected subset of
Rd , d ≥ 1, with a sufficiently smooth boundary ∂Ω (e.g., C2). Without loss of generality, we
assume |Ω| = 1. The reaction rates k+,k−,kp+ and kp− as well as the diffusion coefficients
Di, i ∈ {S,E,C,P}, are supposed to be positive constants, possibly different from each other.
Further, we assume that there exist nonnegative functions n0

i ∈ L∞(Ω) such that

ni(0,x) = n0
i (x) in Ω,

ˆ
Ω

n0
i (x)dx > 0, ∀ i ∈ {S,E,C,P}. (5)

Finally, the system is coupled with the zero-flux boundary conditions

∇ni ·ν = 0, ∀t ∈ I, x ∈ ∂Ω, i ∈ {S,E,C,P}, (6)

where ν is a unit normal vector pointed outward from the boundary ∂Ω.
Two linearly independent conservation laws can be observed, in particular,

ˆ
Ω

(nE +nC)(t,x)dx =
ˆ

Ω

(n0
E +n0

C)(x)dx = M1, (7)
ˆ

Ω

(nS +nC +nP)(t,x)dx =
ˆ

Ω

(n0
S +n0

C +n0
P)(x)dx = M2, (8)

for each t ≥ 0, where M1 > 0,M2 > 0. Note that there is often M1�M2 [10], however, we will
not assume any relation between M1 and M2.

The conservation laws (7) and (8) imply the uniform L1 bounds on the solutions of (4)-
(6) which are insufficient for the existence of global solutions. A global weak solution in all
space dimensions (d ≥ 1), however, can be deduced from a combination of a duality argument
(reviewed in Appendix A), which provides estimates on the (at most quadratic) nonlinearities
of the system, and an approximation method developed in [34, 15], which justifies rigorously
the existence of the weak solution to (4)-(6) built up from the solutions of the approximating
systems. The existence of the global weak solution with the total mass conserved by means
of (7) and (8) can be shown constructively by the semi-implicit (Rothe) method [35, 16], a
method suitable for numerical simulations. We also refer to [4] where a proof of the existence
of the unique, global-in-time solution to (4)-(6) with the concentration dependent diffusivities
and d ≤ 9 is obtained by a combination of duality and bootstrapping arguments. Therefore, we
do not give any rigorous results on the existence of solutions; instead, we focus on the large
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time behaviour of the solution as t→ ∞. However, we derive a-priori estimates which make all
the integrals that will appear (e.g., entropy functional) well defined.

In particular, by a direct application of a duality argument, we deduce that whenever n0
i ∈

L2(logL)2(Ω), then ni ∈L2(logL)2(QT ) for each 0<T <∞, i∈{S,E,C,P}. With the L2(logL)2

estimates at hand, the solution ni for i ∈ {S,E,C,P} can be shown, as in [4, 14], to belong to
L∞([0,∞)×Ω) in all space dimensions given that the initial data and the boundary ∂Ω are suf-
ficiently regular. Indeed, since the nonlinearities contain a linear term, namely nC multiplied by
a constant, the smoothing properties of the heat kernel allow us to study the regularity of some
of the ni with the linear term separately, and then use this regularity to obtain the regularity of
the other ones [14]. Thus again, we can deduce the global-in-time existence of the classical
solution by the standard results for reaction-diffusion systems [24]. The function spaces used
in the article are briefly recalled at the beginning of Section 2.

The main result of this paper is a quantitative analysis of the large time behaviour of the
solution ni, i ∈ {S,E,C,P}, to (4)-(6). It can be stated as follows:

Theorem 1.1. Let (nS,nE ,nC,nP) be a solution to (4)-(6) satisfying (7) and (8). Then there exist
two explicitly computable constants C1 and C2 such that

∑
i∈{S,E,C,P}

‖ni−ni,∞‖2
L1(Ω) ≤C2e−C1t (9)

where ni,∞ is the unique, positive, detailed balance steady state defined in (12).

In other words we show the exponential L1-convergence of the solution ni, i ∈ {S,E,C,P},
of (4)-(6) to the steady state ni,∞, i ∈ {S,E,C,P}, at the rate C1/2. The result is important for
two reasons:

• As soon as an enzyme reaction occurs in a connected spatial domain and there is no
flow of the species through the boundary, the constant steady state is always reached for
arbitrary positive diffusion and kinetic rates in any space dimension.

• The steady state is attained exponentially fast with explicitly computable rates.

The latter result seems to be new even though the computed rates of exponential convergence
may not be optimal.

We remark that the general theory of the detailed balance systems, e.g., [18] and references
therein, implies the existence of a unique detailed balance equilibrium to the system (4)-(6)
satisfying the conservation laws

nE,∞ +nC,∞ = M1, nS,∞ +nC,∞ +nP,∞ = M2, (10)

and the detailed balance conditions

k−nC,∞ = k+nS,∞nE,∞, kp+nC,∞ = kp−nP,∞nE,∞. (11)

It is easy to show that the unique strictly positive equilibrium n∞ = (nS,∞,nE,∞,nC,∞,nP,∞) is
then

nC,∞ =
1
2

(
M+K−

√
(M+K)2−4M1M2

)
,

nE,∞ = M1−nC,∞, nS,∞ =
k−nC,∞

k+nE,∞
, nP,∞ =

kp+nC,∞

kp−nE,∞
,

(12)
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where M = M1 +M2 and K = k−/k++ kp+/kp−.
Theorem 1.1 is proved by means of entropy methods, which are based on an idea to measure

the distance between the solution and the stationary state by the (monotone in time) entropy of
the system. This entropy method has been developed mainly in the framework of the scalar
diffusion equations and the kinetic theory of the spatially homogeneous Boltzmann equation,
see [2, 8, 41] and references therein. The method has been already used to obtain explicit rates
for the exponential decay to equilibrium in the case of reaction-diffusion systems modelling
chemical reactions 2A1 
 A2, A1 +A2 
 A3, A1 +A2 
 A3 +A4 and A1 +A2 
 A3 
 A4 +A5
in [11, 12, 13, 18]. The large time behaviour of a solution to a general detailed balance reaction-
diffusion system counting R reversible reactions involving N chemicals,

α
j

1A1 + . . .+α
j

NAN 
 β
j

1 A1 + . . .+β
j

NAN (13)

with the nonnegative stoichiometric coefficients α
j

1 , . . . ,α
j

N , β
j

1 , . . . ,β
j

N , for j = 1, . . . ,R, was
also studied in [18]. However, the convergence rates could not be explicitly calculated without
knowing explicit structure of the mass conservation laws in the general case.

The present paper extends the application of the proposed entropy method for the reversible
enzyme reaction (3) counting two single reversible reactions. The difficulty comes from a
chemical (an enzyme) that appears in both reactions which makes (3) different from the reaction
A1 + A2 
 A3 
 A4 + A5 studied in [18], in particular, in the structure of the conservation
laws that is essential in the computation of the rates of convergence. Further, even though
the convergence rates are obtained through a chain of rather simple but lengthy calculations in
[11, 12, 13, 18], we simplify them by means of the inequality (32) in Lemma 3.4. In particular, if
we denote Ni =

√
ni, Ni,∞ =

√ni,∞ and Ni =
´

Ω
Ni(x)dx for some chemical ni and its equilibrium

state ni,∞, the expansion used in [11, 12, 13, 18] (c.f., equation (2.29) in [18]) to measure the
distance between Ni and Ni,∞ is of the form

Ni = Ni,∞(1+µi)−
N2

i −Ni
2√

N2
i +Ni

for some constant µi ≥ −1. The fraction in this expansion may become unbounded when N2
i

approaches zero, which has to be carefully treated. On the other hand, Lemma 3.4 allows
different expansions that consequently lead to easier calculations.

For the sake of completeness, we mention that a different approach based on a convexifica-
tion argument is used in [27] to study the large time behaviour of the reaction-diffusion system
for (13). However, it is difficult to derive explicit convergence rates even for a bit more com-
plex chemical reaction such as (3) by using this convexification argument. First order chemical
reaction networks have been recently analysed in [17].

The rest of the paper is organised as follows. In Section 2, we introduce entropy and entropy
dissipation functionals and provide first estimates including L2 and L2(logL)2 bounds. A main
ingredient for the a-priori estimates is a duality argument that is presented in Appendix A. The
large time behaviour of the solution as t→∞ studied by the entropy method is given in Section 3
with technical calculations placed to Appendix B.
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2 Entropy, entropy dissipation and a-priori estimates
Let Ω be a measurable subset of the Euclidean space Rd . By Lp(Ω,Rd) we will denote the set
of all measurable functions u : Ω→ Rd such that ‖u‖Lp(Ω,Rd) < ∞, where

‖u‖Lp(Ω,Rd) =


(ˆ

Ω

|u(x)|p dx
)1/p

for 1≤ p < ∞,

ess supx∈Ω|u(x)| for p = ∞

and | · | is the Euclidean norm on Rd . We will write Lp(Ω) = Lp(Ω,R1). By Lp(logL)p(Ω)
we will denote the set of all measurable functions u : Ω → R such that ‖u logu‖Lp(Ω) < ∞

for p ≥ 1. By W 1,p(Ω) we will denote the Sobolev space W 1,p(Ω) = {u ∈ Lp(Ω);∇u ∈

Lp(Ω,Rd)} equipped with the norm ‖u‖W 1,p(Ω) =
(
‖u‖p

Lp(Ω)
+‖∇u‖p

Lp(Ω,Rd)

)1/p
for 1≤ p < ∞

and ‖u‖W 1,∞(Ω) = max{‖u‖L∞(Ω),‖∇u‖L∞(Ω,Rd)}. Finally, for a Banach space X and an interval
I = (0,T ), by Lp(I;X) we will denote the set of all measurable functions u : I → X with the

norm ‖u‖Lp(I;X) =
(´ T

0 ‖u(t)‖
p
X

)1/p
for 1≤ p < ∞ and ‖u‖L∞(I;X) = ess supt∈I‖u(t)‖X .

Let us first mention a simple result on the non-negativity of solutions of (4)-(6) which fol-
lows from the so-called quasi-positivity property of the right hand sides of (4), see [33].

Lemma 2.1. Let n0
i ≥ 0 in Ω, then ni ≥ 0 everywhere in QT for each i ∈ {S,E,C,P}.

In the sequel, we will write shortly n = (nS,nE ,nC,nP). The entropy functional E(n) :
[0,∞)4→ [0,∞) and the entropy dissipation D(n) : [0,∞)4→ [0,∞) are defined, respectively, by

E(n) = ∑
i={S,E,C,P}

ˆ
Ω

(ni log(σini)−ni +1/σi) dx (14)

and
D(n) = ∑

i={S,E,C,P}
4Di

ˆ
Ω

|∇
√

ni|2 dx

+

ˆ
Ω

[(k+nSnE − k−nC)(log(σSσEnSnE)− log(σCnC))

+(kp−nEnP− kp+nC)(log(σEσPnEnP)− log(σCnC))] dx,

(15)

where σS, σE , σC and σP depend on the kinetic rates k+,k−,kp+ and kp−. The first integral of
the entropy dissipation (15) is known as the relative Fisher information in information theory
and as the Dirichlet form in the theory of large particle systems, since

4
ˆ
|∇
√

ni|2 =
ˆ
|∇ni|2

ni
=

ˆ
ni |∇(logni)|2 ,

see [41], p. 278.
Note that the function x logx− x+ 1 is nonnegative and strictly convex on [0,∞). Thus,

the entropy E(n) is nonnegative along the solution n(t, ·) for each t ≥ 0. Also, the entropy
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dissipation D(n) is nonnegative along the solution n(t, ·) for α,β > 0 such that

σC = αk−, σSσE = αk+,
σC = βkp+, σEσP = βkp−.

(16)

Indeed, with (16) the last two integrands in (15) have a form of (x− y)(logx− logy) which is
nonnegative for all x,y ∈ R+. One can choose α = 1 and β = k−/kp+ to obtain

σC = σE = k−, σS =
k+
k−

and σP =
kp−
kp+

, (17)

though other options are possible.
It is straightforward to verify that D(n) = −∂tE(n), which implies that E(n) is decreasing

along the solution n(t, ·) and that there exists a limit of E(n(t, ·)) as t→ ∞. By integrating this
simple relation over [t1, t2] (t2 > t1 > 0) we obtain

E(n(t1,x))−E(n(t2,x)) =
ˆ t2

t1
D(n(s,x))ds

which implies that

lim
t→∞

ˆ
∞

t
D(n(s,x))ds = 0. (18)

Hence, if the solution n(t,x) tends to some n∞(x) as t → ∞, then D(n∞(x)) = 0 and n∞ is
spatially homogeneous due to the Fisher information in (15). In fact, it holds that

D(n(t,x)) = 0⇐⇒ n(t,x) = n∞ (19)

where n∞ is given by (10) and (11). Let us remark that the entropy E(n) is “D-diffusively
convex Lyapunov functional” for (4)-(6) which implies that diffusion added to the system of
ODEs is irrelevant to its long-term dynamics and that there cannot exist other (non-constant)
equilibrium to (4)-(6) than (12), [19].

Further, we can write

E(n(t,x))+
ˆ t

0
D(n(s,x))ds = E(n(0,x)) (20)

for all t > 0. Since the entropy and entropy dissipation are both nonnegative, we can deduce
from (20) and the conservation laws (7) and (8) that

sup
t∈[0,∞)

‖ni logni‖L1(Ω) ≤C, (21)

i.e., ni ∈ L∞([0,∞);L(logL)(Ω)) for each i ∈ {S,E,C,P}, and

‖∇
√

ni‖2
L2((0,∞);L2(Ω,Rd)) ≤C, (22)

i.e.,
√

ni ∈ L2((0,∞);W 1,2(Ω)) for each i ∈ {S,E,C,P}.
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In addition to the above estimates, let us introduce nonnegative entropy density variables
zi = ni log(σini)−ni +1/σi. Then, the system (4)-(6) implies

∂ z
∂ t
−∆(Az)≤ 0 in Ω, ∇(Az) ·ν = 0 on ∂Ω (23)

where z = ∑i zi, zd = ∑i Dizi (sums go through i ∈ {S,E,C,P}) and A = zd/z ∈
[
D,D

]
for

D = mini∈{S,E,C,P}{Di} and D = maxi∈{S,E,C,P}{Di}. Indeed, after some algebra we obtain

∂ z
∂ t
−∆(Az) =−∑

i
Di
|∇ni|2

ni

− (k+nSnE − k−nC)(log(σSσEnSnE)− log(σCnC))

− (kp−nEnP− kp+nC)(log(σEσPnEnP)− log(σCnC))

(24)

where the r.h.s. of (24) is nonpositive for the constants σi given by (17). The boundary condition
in (23) can be also easily verified.

Hence, a duality argument developed in [34, 33] and reviewed in Appendix A implies for
each j ∈ {S,E,C,P} that

‖n j log(σ jn j)−n j +1/σ j‖L2(QT )
≤C

∥∥∥∥∥∑i
n0

i log(σin0
i )−n0

i +1/σi

∥∥∥∥∥
L2(Ω)

(25)

where C = C(Ω,D,D,T ). We deduce from (25) that ni ∈ L2(logL)2(QT ) as soon as n0
i ∈

L2(logL)2(Ω) for each i ∈ {S,E,C,P}.
Moreover, the same duality argument implies L2(QT ) bounds by taking into account n0

i ∈
L2(Ω) for each i∈ {S,E,C,P} and z = nS+nE +2nC+nP, zd = DSnS+DEnE +2DCnC+DPnP
and A = zd/z for which we directly obtain (23).

3 Exponential convergence to equilibrium: an entropy method
Let us first describe briefly a basic idea of the method. Consider an operator A, which can be
linear or nonlinear and can involve derivatives or integrals, and an abstract problem

∂tρ = Aρ.

Assume that we can find a Lyapunov functional E := E(ρ), usually called the entropy, such that
D(ρ) =−∂tE(ρ)≥ 0 and

D(ρ)≥Φ(E(ρ)−E(ρeq)) (26)

along the solution ρ where Φ is a continuous function strictly increasing from 0 and ρeq is a state
independent of the time t, [2, 41]. The inequality (26) between the entropy dissipation D(ρ)
and the relative entropy E(ρ)−E(ρeq) is known as the entropy-entropy dissipation inequality
(EEDI). The EEDI (26) and the Gronwall inequality then imply the convergence in the relative
entropy E(ρ)→ E(ρeq) as t → ∞ that can be either exponential if Φ(x) = λx or polynomial
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if Φ(x) = xα ; in both cases λ and α can be found explicitly. In the second step, the relative
entropy E(ρ)−E(ρeq) is bounded from below by the distance ρ−ρeq in some topology.

In our reaction-diffusion setting, the relative entropy E(n|n∞) := E(n)−E(n∞) for the en-
tropy functional defined in (14) can be written as

E(n|n∞) = ∑
i={S,E,C,P}

ˆ
Ω

ni log
ni

ni,∞
− (ni−ni,∞)dx≥ 0. (27)

This is a consequence of the conservation laws (7) and (8) which together with (10) and (11)
imply

∑
i={S,E,C,P}

(ni−ni,∞) log(σini,∞) = 0. (28)

Note that the relative entropy (27), known also as the Kullback-Leibler divergence, is universal
in the sense that it is independent of the reaction rate constants, [20]. The relative entropy (27)
can be then estimated from below by using the Cziszár-Kullback-Pinsker (CKP) inequality
known from information theory that can be stated as follows.

Lemma 3.1 (Cziszár-Kullback-Pinsker, [18]). Let Ω be a measurable domain in Rd and u,v :
Ω→ R+ measurable functions. Thenˆ

Ω

u log
u
v
− (u− v)dx≥ 3

2‖u‖L1(Ω)+4‖v‖L1(Ω)

‖u− v‖2
L1(Ω). (29)

Let us mention some other tools that will be later recalled in the proof of the first step.

Lemma 3.2 (Logarithmic Sobolev inequality, [13]). Let Ω∈Rd be a bounded domain such that
|Ω| ≥ 1. Then,

ˆ
Ω

u2 logu2 dx−
(ˆ

Ω

u2 dx
)

log
(ˆ

Ω

u2 dx
)
≤ L
ˆ

Ω

|∇u|2 (30)

that holds for some L = L(Ω,d) positive, whenever the integrals on both sides of the inequality
exist.

Lemma 3.3 (Poincaré-Wirtinger inequality, [32]). Let Ω ∈ Rd be a bounded domain. Then

P(Ω)

ˆ
Ω

|u(x)−u|2 ≤
ˆ

Ω

|∇u|2, ∀u ∈ H1(Ω) (31)

where u =
´

Ω
u(x)dx and P(Ω) is the first non-zero eigenvalue of the Laplace operator with a

Neumann boundary condition.

The following lemma is a technical consequence of the Jensen inequality.

Lemma 3.4. Let Ω ∈ Rd be such that |Ω| = 1, u,v ∈ L1(Ω) be nonnegative functions, u =´
Ω

u(x)dx and v =
´

Ω
v(x)dx. Then(√

u−
√

v
)2
≤ (
√

u−
√

v)2 +‖
√

u−
√

u‖2
L2(Ω), (32)

where equality occurs for v≡ 0.
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Proof. Let us define an expansion of
√

u around its spatial average
√

u by
√

u =
√

u+ δu(x)
which implies immediately that δu = 0,

‖
√

u−
√

u‖2
L2(Ω) = ‖δu‖2

L2(Ω) = δ 2
u and u =

√
u

2
+δ 2

u .

Then, with the Jensen inequality
√

u≤
√

u we can write(√
u−
√

v
)2

= u−2
√

u
√

v+ v

≤
√

u
2
−2
√

u
√

v+ v+δ 2
u

= (
√

u−
√

v)2 +δ 2
u

which concludes the proof.

In fact, with the ansatz
√

v =
√

v+δv(x), we can deduce that(√
u−
√

v
)2
≤ (
√

u−
√

v)2 +‖
√

u−
√

u‖2
L2(Ω)+‖

√
v−
√

v‖2
L2(Ω)

≤ ‖
√

u−
√

v‖2
L2(Ω)+

1
P(Ω)

(‖∇
√

u‖2
L2(Ω)+‖∇

√
v‖2

L2(Ω))

by the Jensen and Poincaré-Wirtinger inequalities.
Recall that we assume |Ω| = 1, D = mini{Di}, D = maxi{Di} and we write shortly n =

(nS,nE ,nC,nP), n∞ = (nS,∞,nE,∞,nC,∞,nP,∞) and n(t) = (nS,nE ,nC,nP) where ni =
´

Ω
ni dx for

each i ∈ {S,E,C,P}. In the summations we will omit i ∈ {S,E,C,P} from the notation.
Following the introduction to entropy methods at the beginning of Section 3, first we have

to establish the EEDI (26).

Lemma 3.5 (EEDI). Let n be a solution to (4)-(6) satisfying (7) and (8). Then there exists a
positive constant C1 such that

D(n)≥C1E(n|n∞), (33)

where n∞ is given by (12).

Proof. We split the relative entropy so that

E(n|n∞) = E(n|n)+E(n|n∞),

and estimate both terms separately. For the first term we obtain that

E(n|n) = ∑
i

ˆ
Ω

ni logni dx−ni logni ≤ L∑
i

ˆ
Ω

|∇
√

ni|2 dx (34)

by the logarithmic Sobolev inequality (30). Hence, when compared with the entropy dissipa-
tion (15), we conclude that D(n)≥C1E(n|n) for the constant C1 = 4D/L.
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For the second term E(n|n∞) we use (28) and an elementary inequality x logx− x+ 1 ≤
(x−1)2, which holds true for x≥ 0, to obtain

E(n|n∞) = ∑
i

ni log
ni

ni,∞
−ni +ni,∞

≤∑
i

1
ni,∞

(ni−ni,∞)
2

≤C∑
i

(√
ni−
√

ni,∞
)2

≤C

(
∑

i

(√
ni−
√

ni,∞

)2
+∑

i
‖
√

ni−
√

ni‖2
L2(Ω)

)
(35)

where the last inequality is due to (32) (for u = ni and v = v = ni,∞) and the constant C =
2maxi{1/ni,∞}max{2M1,2M2,M1 +M2} is deduced from (7) and (8).

On the other hand, the entropy dissipation D(n) given by (15) can be estimated from below
by the Poincaré-Wirtinger inequality (31) and an elementary inequality (x− y)(logx− logy)≥
4(
√

x−√y)2, which holds true for x,y ∈ R+. We obtain

D(n)≥ 4min{P(Ω)D,1}
(
∑

i
‖
√

ni−
√

ni‖2
L2(Ω)

+ ‖
√

k+nSnE −
√

k−nC‖2
L2(Ω)+‖

√
kp−nEnP−

√
kp+nC‖2

L2(Ω)

)
.

(36)

We can conclude the proof once we find two constants C3 and C4 such that

∑
i

(√
ni−
√

ni,∞

)2
+∑

i
‖
√

ni−
√

ni‖2
L2(Ω) ≤C3 ∑‖

√
ni−
√

ni‖2
L2(Ω)

+C4

(
‖
√

k+nSnE −
√

k−nC‖2
L2(Ω)+‖

√
kp−nEnP−

√
kp+nC‖2

L2(Ω)

)
,

(37)

since in this case, by combining (35)-(37), we obtain

1
C

E(n(t)|n∞)≤
max{C3,C4}

4min{P(Ω)D,1}
D(n).

Hence, we can derive a constant C̃1 such that D(n)≥ C̃1E(n|n∞) and thus the convergence rate
C1 in the EEDI (33), e.g., C1 = min{C1,C̃1}/2. The missing inequality (37) is proved in the
following Lemma 3.6.

For the sake of simplicity, let us denote Ni =
√

ni and Ni,∞ =
√ni,∞ and thus rewrite (37)

into the form

∑
i

(
Ni−Ni,∞

)2
+∑

i
‖Ni−Ni‖2

L2(Ω) ≤C3 ∑
i
‖Ni−Ni‖2

L2(Ω)

+C4

(
‖
√

k+NSNE −
√

k−NC‖2
L2(Ω)+‖

√
kp−NENP−

√
kp+NC‖2

L2(Ω)

)
.

(38)
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Lemma 3.6. Let Ni, i ∈ {S,E,C,P}, be measurable functions from Ω to R+ satisfying the
conservation laws (7) and (8), i.e.

N2
C +N2

E = M1 and N2
S +N2

C +N2
P = M2, (39)

and let ni,∞ = N2
i,∞ be defined by (10) and (11). Then there exist constants C3 and C4, cf. (74)

and (75), such that (38) is satisfied.

Proof. Let us use the expansion of Ni around the spatial average Ni from Lemma 3.4,

Ni = Ni +δi(x), δ i = 0, i ∈ {S,E,C,P}, (40)

which implies N2
i = Ni

2
+δ 2

i for each i ∈ {S,E,C,P} and

∑
i
‖Ni−Ni‖2

L2(Ω) = ∑
i

δ 2
i . (41)

With (40) at hand, we can expand the remaining terms in (38). In particular, we obtain

‖
√

k+NSNE −
√

k−NC‖2
L2(Ω) =

(√
k+NS NE −

√
k−NC

)2

+2
√

k+
(√

k+NS NE −
√

k−NC

)
δSδE

+‖
√

k+
(
NSδE +NEδS +δSδE

)
−
√

k−δC‖2
L2(Ω)

≥
(√

k+NS NE −
√

k−NC

)2
−
√

k+K1 ∑
i

δ 2
i ,

(42)

since the third term in (42) is nonnegative and the second term in (42) can be estimated as
follows,

2
(√

k+NS NE −
√

k−NC

)
δSδE ≥−2

∣∣∣√k+NS NE −
√

k−NC

∣∣∣ˆ
Ω

δSδE dx

≥−K1(δ
2
S +δ 2

E)≥−K1 ∑
i

δ 2
i ,

where K1 =
√

k+M1M2 +
√

k−(M1 +M2)/2 is deduced from the Jensen inequality N2
i ≥ Ni

2

and (39). Analogously, we deduce for K2 =
√

kp−M1M2 +
√

kp+(M1 +M2)/2 that

‖
√

kp−NPNE −
√

kp+NC‖2
L2(Ω) ≥

(√
kp−NP NE −

√
kp+NC

)2
−
√

kp−K2 ∑
i

δ 2
i . (43)

We see that with (41)–(43) it is sufficient to find C3 and C4 such that

∑
i
(Ni−Ni,∞)

2 +∑
i

δ 2
i ≤

(
C3−C4(

√
k+K1 +

√
kp−K2)

)
∑

i
δ 2

i

+C4

((√
k+NS NE −

√
k−NC

)2
+
(√

kp−NP NE −
√

kp+NC

)2
) (44)

12



from which (38) (and so (37)) directly follows.
Next, we study how far the spatial average Ni can be from the equilibrium state Ni,∞ for each

i ∈ {S,E,C,P}, i.e., we consider a substitution

Ni = Ni,∞(1+µi) (45)

for some −1≤ µi ≤ µi,max, i ∈ {S,E,C,P}. We obtain

∑
i

(
Ni−Ni,∞

)2
= ∑

i
N2

i,∞µ
2
i (46)

and, by using (11), namely
√

k+NS,∞NE,∞ =
√

k−NC,∞ and
√

kp−NP,∞NE,∞ =
√

kp+NC,∞,(√
k+NS NE −

√
k−NC

)2
= k−N2

C,∞((1+µS)(1+µE)− (1+µC))
2,(√

kp−NP NE −
√

kp+NC

)2
= kp+N2

C,∞((1+µP)(1+µE)− (1+µC))
2.

(47)

Hence, (44) follows from

∑
i

N2
i,∞µ

2
i +∑

i
δ 2

i ≤
(

C3−C4(
√

k+K1 +
√

kp−K2)
)
∑

i
δ 2

i

+C4K3(((1+µS)(1+µE)− (1+µC))
2︸ ︷︷ ︸

= I1

+((1+µP)(1+µE)− (1+µC))
2︸ ︷︷ ︸

= I2

)
(48)

where K3 = min{
√

k−,
√

kp+}N2
C,∞.

It remains to prove (48). The basic idea is to explore all possible combinations of values
of (µE ,µC,µS,µP) introduced in (45) subject to the conservation law (39). It follows from (39)
that, for example, the case when µE > 0 and µC > 0 cannot happen at the same time since,
otherwise, by using (10) and the Jensen inequality N2

i ≥ Ni
2 we obtain

M1 = N2
E +N2

C ≥ NE
2
+NC

2
> N2

E,∞ +N2
C,∞ = M1,

which is a contradiction. Analogously, we can exclude the case when µS > 0, µC > 0 and
µP > 0 hold at the same time. For all the other admissible cases, see Table 1, we show by using
elementary inequalities for real numbers and (39) that

∑
i∈K

N2
i,∞µ

2
i ≤ α ∑

i∈K
δ 2

i and I1 + I2 ≥ β ∑
i∈L

N2
i,∞µ

2
i − γ ∑

i∈L
δ 2

i

for two not necessarily distinct sets of indices K ,L ⊂{S,E,C,P} such that K ∪L = {S,E,C,P},
and positive constants α , β and γ . The constants C3 and C4 in (48) are deduced from α , β and γ .
Since the rest of the proof is rather simple but technical, we have placed it to Appendix B.

We can finally prove the exponential convergence of the solution n(t) of (4)-(6) to the equi-
librium n∞ given by (12).
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Table 1: Eleven quadruples of possible relations among µi, i ∈ {S,E,C,P}, which are allowed
by the conservation laws (61) and (62). In the table “+ ” means that µi > 0 and “− ” that
−1≤ µi ≤ 0. Each quadruple is denoted by a Roman numeral from I to XI.

µE − + −

µC − − +

µS − − + + − − + + − − +

µP − + − + − + − + − + −

(I) (II) (III) (IV) (V) (VI) (VII) (VIII) (IX) (X) (XI)

Proof. (of Theorem 1.1) We deduce from (19) that

D(n) =− d
dt

E(n) =− d
dt

E(n|n∞)

and from the EEDI (33) that
d
dt

E(n|n∞)≤−C1E(n|n∞).

Then the Gronwall inequality yields

E(n|n∞)≤ E(n(0,x)|n∞)e−C1t , (49)

that is the exponential convergence in the relative entropy as t→∞. On the other hand, the CKP
inequality (29) applied on the l.h.s. of (49) implies that

E(n|n∞)≥
1

2M2
‖nS−nS,∞‖2

L1(Ω)+
1

M1 +M2
‖nC−nC,∞‖2

L1(Ω)

+
1

2M1
‖nE −nE,∞‖2

L1(Ω)+
1

2M2
‖nP−nP,∞‖2

L1(Ω)

(50)

due to (27) and the conservation laws (7) and (8). Thus, with C1 found in Lemma 3.5 and

C2 = E(n(0,x)|n∞)/min{1/2M1,1/2M2,1/(M1 +M2)}

we obtain (9).

4 Discussion
The mathematical treatment of the enzyme reactions (1) and (3) usually relies on using ODEs.
There are significant assumptions leading to an ODE formalism: elimination of molecular noise,
assuming volumes and temperature to be constant, and considering spatial structure to be in-
significant [30], p. 16.

In this paper we have extended an ODE model for the reversible enzyme reaction (3), which
is derived from the mass action kinetics, by taking spatial structure of, for example, a test tube
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or a living cell, into account. Hence we proposed to study the reaction-diffusion model (4)-
(6) in an open, bounded and connected domain subject to homogeneous Neumann boundary
condition. In particular, we focused on the asymptotic behaviour of the solution of (4)-(6).
We showed that the solution converges exponentially fast to the unique constant steady state
assuming that the initial concentrations of the species are nonzero. The same would be true if
there was an enzyme (either free or bound to the intermediate complex) and either a substrate
or a product present initially in the system.

The method we used is the entropy method that is based on the functional inequality (33)
between the entropy of the system and the associated entropy dissipation. In contrast, it seems
that the entropy method cannot be applied to the reaction-diffusion system for the irreversible
enzyme reaction (1) (i.e., system (4)-(6) with kp− = 0). The kinetics can still be seen in this
case, nevertheless, there is no entropy such as (14) for this “irreversible” system.

Moreover, the studied reaction-diffusion model (4)-(6) is still rather simple as, for exam-
ple, we assume that the diffusivities of the four species are all positive constants. As it often
happens in living cells that enzymes are confined to subcellular compartments, it would be in-
teresting to see how the entropy method would have to be shaped in the case when one or more
species were immobilised, especially since the diffusion terms play a role in the derivation
of the entropy-entropy dissipation inequality. The global-in-time existence of solutions of the
reaction-diffusion systems for some reversible chemical reactions with one or more diffusivities
equal to zero was studied in [14].

We conclude the article by a few remarks on a spatial version of the Michaelis-Menten
kinetics that is omitted from the present article. Without any rigorous derivation and without
any validity of its use, the Michaelis-Menten equation (2) in the presence of diffusion was
considered in [31]. In particular, the author studied the asymptotic behaviour and stability of
the steady state solution of the scalar equation

∂nS

∂ t
− div(D(x)∇nS) =−kp+

e0nS

Km +nS
(51)

on a bounded domain in Rd for d ≥ 1 subject to Robin boundary condition. By a suitable con-
struction of upper and lower solution, it was proved that the equation (51) possesses a unique
nonnegative equilibrium that is exponentially asymptotically stable. Another problem consid-
ered in [31] involved two equations for the concentration of a substrate nS and an enzyme
nE = [E], 

∂nS

∂ t
− div(D(x)∇nS) =−k+nSnE + k−(e0−nE),

∂nE

∂ t
=−k+nSnE +(k−+ kp+)(e0−nE),

(52)

with Robin boundary condition for nS and suitably smooth initial data for both species. A
threshold result on the stability and instability of steady state solutions of (52) was explicitly
given. In both models (51) and (52) enzymes were found immobilised in space.

The reaction-diffusion models described above as well as other models for both irreversible (1)
and reversible (3) enzyme reactions either with or without the Michaelis-Menten kinetics but
always including an immobilised enzyme were studied in [22]. The validity of the Michaelis-
Menten equation (2) by means of numerical analysis of the dynamical behaviour of a reaction-
diffusion system for (1) with the immobilised enzyme was given in [28]. A QSSA was also
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applied to a more realistic enzymatic reaction where some of the enzyme is inactivated by re-
action with the substrate, the so-called suicide substrate system, in which the substrate diffuses
freely over the region containing the immobilised enzyme [25, 7].

The validity of the Michaelis-Menten equation (2) in a spatial reaction-diffusion framework
for (1) including a mobile enzyme E and intermediate complex C was studied in [21] in one
spatial dimension by comparing different relations between the time scales of reactions and
diffusion. In particular, combinations of enzyme kinetics with large, moderate and slow dif-
fusivities were discussed in [21]. It was shown that the Michaelis-Menten kinetics applies as
soon as the concentrations of the species become homogeneous in space in the first two cases
of the large and moderate diffusion. For slow diffusion, the reaction kinetics dominates so that
at every point in space, the reaction proceeds exactly as in the kinetics problem at these points
without any strong influence from the other points. After the substrate was used up and all
of the complex decayed into product and enzyme at every point, the enzyme profile becomes
homogenised due to diffusion.

Another QSSA approach for a reaction-diffusion system modelling the reaction

A+B
k1+


k1−

C
k2+


k2−

P+Q,

with the diffusing species in a bounded domain and with a highly reactive intermediate complex
C (the limit k1−+ k2+→ ∞) was analysed in [3].

Appendix A. Duality principle
We recall a duality principle [33, 34] which is used to show L2(logL)2 and L2 bounds, respec-
tively, for the solution of the system (4)-(6). Note that a more general result is proved in [33],
Chap. 6, than presented here.

Lemma 4.1 (Duality principle). Let 0 < T < ∞ and Ω be a bounded, open and regular (e.g.,
C2) subset of Rd . Consider a nonnegative weak solution u of the problem

∂tu−∆(Au)≤ 0,
∇(Au) ·ν = 0, ∀t ∈ I, x ∈ ∂Ω,

u(0,x) = u0(x),
(53)

where we assume that 0 < A1 ≤ A = A(t,x)≤ A2 < ∞ is smooth, A1 and A2 are strictly positive
constants, u0 ∈ L2(Ω) and

´
u0 ≥ 0. Then,

‖u‖L2(QT )
≤C‖u0‖L2(Ω) (54)

where C =C(Ω,A1,A2,T ).

Proof. Let us consider an adjoint problem: find a nonnegative function v ∈C(I;L2(Ω)) which
is regular in the sense that ∂tv,∆v ∈ L2(QT ) and satisfies

−∂tv−A∆v = F,
∇v ·ν = 0, ∀t ∈ I, x ∈ ∂Ω,

v(T,x) = 0,
(55)
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for F = F(t,x)∈ L2(QT ) nonnegative. The existence of such v follows from the classical results
on parabolic equations [24].

By combining equations for u and v, we can readily check that

− d
dt

ˆ
Ω

uv≥
ˆ

Ω

uF

which, by using v(T ) = 0, yields ˆ
QT

uF ≤
ˆ

Ω

u0v0. (56)

By multiplying equation for v in (55) by −∆v, integrating per partes and using the Young in-
equality, we obtain

−1
2

d
dt

ˆ
Ω

|∇v|2 +
ˆ

Ω

A(∆v)2 =−
ˆ

Ω

F∆v≤
ˆ

Ω

F2

2A
+

A
2
(∆v)2,

i.e.

− d
dt

ˆ
Ω

|∇v|2 +
ˆ

Ω

A(∆v)2 ≤
ˆ

Ω

F2

A
.

Integrating this over [0,T ] and using v(T ) = 0 givesˆ
Ω

|∇v0|2 +
ˆ

QT

A(∆v)2 ≤
ˆ

QT

F2

A
.

Thus we obtain the a-priori bounds

‖∇v0‖L2(Ω,Rd) ≤
∥∥∥∥ F√

A

∥∥∥∥
L2(QT )

and ‖
√

A∆v‖L2(Ω) ≤
∥∥∥∥ F√

A

∥∥∥∥
L2(QT )

. (57)

From the equation for v we can write (again, by integrating this equation over Ω and [0,T ] and
using v(T ) = 0) ˆ

Ω

v0 =

ˆ
QT

A∆v+F.

Hence, ˆ
Ω

v0 =

ˆ
QT

√
A
(√

A∆v+
F√
A

)
≤ ‖
√

A‖L2(QT )

∥∥∥∥√A∆v+
F√
A

∥∥∥∥
L2(QT )

≤ 2‖
√

A‖L2(QT )

∥∥∥∥ F√
A

∥∥∥∥
L2(QT )

,

(58)

which follows from the Hölder inequality and (57).
To conclude the proof, let us return to (56) and write

0≤
ˆ

QT

uF ≤
ˆ

Ω

u0v0 =

ˆ
Ω

u0(v0− v0)+u0v0

≤ ‖u0‖L2(Ω)‖v0− v0‖L2(Ω)+

ˆ
Ω

u0v0

≤C(Ω)‖u0‖L2(Ω)‖∇v0‖L2(Ω,Rd)+u0

ˆ
Ω

v0,
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where we have used the Hölder and Poincaré-Wirtinger inequalities, respectively. Recall that

v =
1
|Ω|

ˆ
Ω

vdx. The norm of the gradient v0 can be estimated by (57) and the last remaining

integral by (58) so that we obtain
ˆ

QT

uF ≤
(

C(Ω)‖u0‖L2(Ω)+2u0‖
√

A‖L2(QT )

)∥∥∥∥ F√
A

∥∥∥∥
L2(QT )

, (59)

which holds true for any F ∈ L2(QT ). Thus, for F = Au we can finally write

‖
√

Au‖L2(QT )
≤C(Ω)‖u0‖L2(Ω)+2u0‖

√
A‖L2(QT )

(60)

and deduce (54) by using the boundedness of A, i.e. A1 ≤ A(t,x)≤ A2.

We remark that, by construction, A(t,x) in (23) is not smooth but L∞ only. We refer to [5]
for the corresponding existence and regularity result for the adjoint problem (55).

Appendix B. Inequality (48)
In this section we give a full proof of the inequality (48). We recall that all the summations
below go for i ∈ {S,E,C,P}, i.e., ∑ = ∑i∈{S,E,C,P}.

We start by noting that that the conservation law (39), reflecting the ansatz (40) and the
substitution (45), namely

N2
E,∞ +N2

C,∞ = N2
E,∞(1+µE)

2 +δ 2
E +N2

C,∞(1+µC)
2 +δ 2

C, (61)

N2
S,∞ +N2

C,∞ +N2
P,∞ = N2

S,∞(1+µS)
2 +δ 2

S +N2
C,∞(1+µC)

2 +δ 2
C

+N2
P,∞(1+µP)

2 +δ 2
P,

(62)

possesses restrictions on the signs of µi’s. In particular, we remark that

i) ∀i ∈ {S,E,C,P}, −1≤ µi ≤ µi,max where µi,max depends on n∞;

ii) the conservation law (61) excludes the case when µE > 0 and µC > 0, since in this case
NE > NE,∞ and NC > NC,∞ and we deduce from (39), (61) and the Jensen inequality
N2

i ≥ Ni
2, that

M1 = N2
E +N2

C ≥ NE
2
+NC

2
> N2

E,∞ +N2
C,∞ = M1,

which is a contradiction;

iii) analogously, the conservation law (62) excludes the case when µS > 0, µC > 0 and µP > 0;

iv) for −1 ≤ µE ,µC ≤ 0, the conservation law (61) implies N2
E,∞µ2

E +N2
C,∞µ2

C ≤ ∑δ 2
i , since

for any s ∈ [−1,0] we have −1≤ s≤−s2 ≤ 0 and we can deduce from (61) that

0 = N2
E,∞(2µE +µ

2
E)+N2

C,∞(2µC +µ
2
C)+δ 2

C +δ 2
E

≤−N2
E,∞µ

2
E −N2

C,∞µ
2
C +∑δ 2

i ;
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v) analogously, for −1 ≤ µS,µC,µP ≤ 0, the conservation law (62) implies that N2
S,∞µ2

S +

N2
C,∞µ2

C +N2
P,∞µ2

P ≤ ∑δ 2
i .

To find explicitly C3 and C4 in (48), we have to consider all possible configurations of
µi’s in (48), that is all possible quadruples (µE ,µC,µS,µP) depending on their signs. The re-
marks (ii) and (iii) reduce the total number of quadruples by five and the remaining 11 quadru-
ples are shown in Table 1.

Ad (I). The remarks (iv) and (v) imply that ∑N2
i,∞µ2

i ≤ 2∑δ 2
i and, therefore, (48) is satisfied

for C3 = 3 and C4 = 0.

Ad (II) and (III). We prove (48) for −1≤ µE ,µC ≤ 0 and µS and µP having opposite signs.
Firstly, let us remark that (61) implies that

N2
E,∞ = N2

E,∞(1+µE)
2 +N2

C,∞(2µC +µ
2
C)+δ 2

E +δ 2
C,

i.e.,

(1+µE)
2 = 1−

N2
C,∞

N2
E,∞

(2µC +µ
2
C)−

1
N2

E,∞
(δ 2

E +δ 2
C)

≥ 1− 1
N2

E,∞
∑δ 2

i

(63)

since for −1 ≤ µC ≤ 0 there is −1 ≤ 2µC + µ2
C ≤ 0. Then, by using an elementary inequality

a2 +b2 ≥ (a−b)2/2 we obtain that

I1 + I2 = ((1+µS)(1+µE)− (1+µC))
2 +((1+µP)(1+µE)− (1+µC))

2

satisfies
I1 + I2 ≥

1
2
(µS−µP)

2(1+µE)
2

≥ 1
2

K4(N2
S,∞µ

2
S +N2

P,∞µ
2
P)−K5 ∑δ 2

i

(64)

where we have used (63) and the fact that µS and µP have opposite signs and are bounded above
by µS,max and µP,max (by the remark (i)). In (64), K4 = min

{
1/N2

S,∞,1/N2
P,∞

}
is sufficient,

nevertheless, we will take

K4 = min
i∈{S,E,C,P}

{
1

N2
i,∞

}
and K5 =

1
N2

E,∞
(µ2

S,max +µ
2
P,max), (65)

since K4 in (65) will appear several times elsewhere. We deduce from (64) and the remark (iv)
that

∑N2
i,∞µ

2
i +∑δ 2

i ≤ 2
(

1+
K5

K4

)
∑δ 2

i +
2

K4
(I1 + I2), (66)

and we see that (48) is satisfied for

C4 =
2

K3K4
and C3 = 2

(
1+

K5

K4

)
+C4

(√
k+K1 +

√
kp−K2

)
,
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when (48) is compared with the r.h.s. of (66).

Ad (IV) Assume −1≤ µE ,µC ≤ 0 and µS,µP > 0. A combination of (61) and (62) gives

N2
E,∞−N2

S,∞−N2
P,∞ = NE

2
+δ 2

E −NS
2−δ 2

S −NP
2−δ 2

P

≤ N2
E,∞−NS

2−NP
2
+δ 2

E −δ 2
S −δ 2

P,
(67)

since NE
2 ≤ N2

E,∞ for −1≤ µE ≤ 0, where NE
2
= N2

E,∞(1+µE)
2. We deduce from (67) that

−N2
S,∞−N2

P,∞ ≤−N2
S,∞(1+µS)

2−N2
P,∞(1+µP)

2 +δ 2
E −δ 2

S −δ 2
P

and
N2

S,∞(2µS +µ
2
S )+N2

P,∞(2µP +µ
2
P)≤ δ 2

E −δ 2
S −δ 2

P ≤∑δ 2
i .

Since µS,µP > 0, then N2
S,∞µ2

S +N2
P,∞µ2

P ≤ ∑δ 2
i . This estimate together with the remark (iv)

yields ∑N2
i,∞µ2

i ≤ 2∑δ 2
i . Similarly as in the case (I), (48) is satisfied for C3 = 3 and C4 = 0.

Ad (V) Let us now consider the case when −1≤ µS,µC,µP ≤ 0 and µE > 0. As in the case
(IV), a combination of (61) and (62) gives

N2
S,∞ +N2

P,∞−N2
E,∞ = NS

2
+δ 2

S +NP
2
+δ 2

P−NE
2−δ 2

E

≤ N2
S,∞ +N2

P,∞−NE
2
+δ 2

S +δ 2
P−δ 2

E ,
(68)

since, again, Ni
2 ≤ N2

i,∞ for −1≤ µi ≤ 0 and i = S,P. Hence, for µE > 0 we deduce from (68)

that N2
E,∞µ2

E < ∑δ 2
i , which with the remark (v) gives ∑N2

i,∞µ2
i < 2∑δ 2

i . Thus, (48) is satisfied
for C3 = 3 and C4 = 0.

Ad (VI) and (VII). Assume that µE > 0, −1 ≤ µC ≤ 0 and µS and µP have opposite signs.
Then using an elementary inequality a2 +b2 ≥ (a+b)2/2 we obtain

I1 + I2 ≥
1
2
(µS−µP)

2(1+µE)
2 >

1
2
(µS−µP)

2 ≥ 1
2
(µ2

S +µ
2
P),

since (1+ µE)
2 > 1 and µS and µP have opposite signs. Further, it holds that (1+ µk)(1+

µE) > (1+ µE) for µk being either µS > 0 or µP > 0 (one of them is positive). This implies
(1+µk)(1+µE)− (1+µC)> µE −µC > 0 and thus (µE and µC have opposite signs)

I1 + I2 > (µE −µC)
2 ≥ µ

2
E +µ

2
C.

Altogether, we obtain for both cases that I1+ I2 > ∑ µ2
i /4≥ K4/4∑N2

i,∞µ2
i where K4 is defined

in (65). We deduce that (48) is satisfied for

C4 =
4

K3K4
and C3 = 1+C4

(√
k+K1 +

√
kp−K2

)
. (69)
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Ad (VIII). Assume that µE ,µS,µP > 0 and −1 ≤ µC ≤ 0. Using the similar arguments as
in the previous case, in particular, (1+ µS)(1+ µE) > (1+ µS), (1+ µS)(1+ µE) > (1+ µE),
(1+µP)(1+µE)> (1+µP) and (1+µP)(1+µE)> (1+µE) and since µi−µC > 0 for each
i ∈ {S,E,P}, we can write

I1 + I2 = ((1+µS)(1+µE)− (1+µC))
2 +((1+µP)(1+µE)− (1+µC))

2

≥ 1
2
(µS−µC)

2 +(µE −µC)
2 +

1
2
(µP−µC)

2 ≥ 1
2 ∑µ

2
i ≥

K4

2 ∑N2
i,∞µ

2
i .

Hence, (48) is satisfied for C4 = 2/K3K4 and C3 defined in (69).

Ad (IX). The case when −1 ≤ µE ,µS,µP ≤ 0 and µC > 0 is similar to the case (VIII).
Now we observe that µC− µi > 0 for each i ∈ {S,E,P} and that (1+ µS)(1+ µE) ≤ (1+ µS),
(1+ µS)(1+ µE) ≤ (1+ µE), (1+ µP)(1+ µE) ≤ (1+ µP) and (1+ µP)(1+ µE) ≤ (1+ µE)
which can be used to conclude I1 + I2 ≥ ∑ µ2

i /2≥ K4/2∑N2
i,∞µ2

i . The constants C3 and C4 are
the same as in the case (VIII).

Ad (X). Assume that−1≤ µE ≤ 0, µC > 0,−1≤ µS ≤ 0 and µP > 0. By the same argument
as in (IX), we can write

I1 + I2 ≥ I1 ≥ (µC−µE)
2 ≥ µ

2
C +µ

2
E . (70)

Using the same elementary inequality as in (II) and (VI), we obtain

I1 + I2 ≥
1
2
(µS−µP)

2(1+µE)
2, (71)

where −1 ≤ µE ≤ 0, thus we cannot proceed in the way as in the cases (VI) and (VII) nor in
the cases (II) and (III), since µC is positive now. Nevertheless, we distinguish two subcases
when −1 < η ≤ µE ≤ 0 and −1 ≤ µE < η . For example, η = −1/2 works well, however, a
more suitable constant η could be possibly found. For η = −1/2 and η ≤ µE ≤ 0 we obtain
from (71) that

I1 + I2 ≥
1
8
(µS−µP)

2 ≥ 1
8
(µ2

S +µ
2
P). (72)

This with (70) implies that I1 + I2 ≥ ∑ µ2
i /16 ≥ K4/16∑N2

i,∞µ2
i and we conclude that (48) is

satisfied for C4 = 16/K3K4 and C3 defined in (69).
For η = −1/2 and −1 ≤ µE < η we obtain, by using an elementary inequality (a−b)2 ≥

a2/2−b2, that
I1 + I2 ≥ I1 = ((1+µC)− (1+µS)(1+µE))

2

≥ 1
2
(1+µC)

2− (1+µS)
2(1+µE)

2 >
1
4
,

(73)

since (1+µC)
2 > 1 for µC > 0 and (1+µS)

2(1+µE)
2 < 1/4 for −1≤ µS ≤ 0 and −1≤ µE <

−1/2. On the other hand, ∑N2
i,∞µ2

i ≤ ∑N2
i,∞µ2

i,max =: K6 by the remark (i). We see that (48) is
satisfied for C4 = K6/4K3 and C3 as in (69).
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Ad (XI). Finally, assume that −1 ≤ µE ≤ 0, µC > 0, µS > 0 and −1 ≤ µP ≤ 0. This case
is symmetric to the previous case (X), thus the same procedure can be applied again (it is suffi-
cient to exchange superscripts S and P everywhere they appear in (X)) to deduce the constants
C3 and C4 in (48). In particular, we take C4 = 16/K3K4 for −1/2 ≤ µE ≤ 0 and C4 = K6/4K3
for −1≤ µE <−1/2. In both subcases C3 is as in (69).

From the eleven cases (I)-(XI), we need to take

C4 =
1

K3
max

{
16
K4

,
K6

4

}
(74)

and

C3 = max
{

3,2
(

1+
K5

K4

)}
+C4

(√
k+K1 +

√
kp−K2

)
(75)

to find (48) true.
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